1. International Diabetes Federation. IDF diabetes atlas. 6th ed. Brussels, Belgium: International Diabetes Federation;2013.
2. Centers for Disease Control and Prevention. National Diabetes Fact Sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011 [Internet]. Atlanta (GA): US Department of Health and Human Services, Centers for Disease Control and Prevention;2011. cited at 2016 Mar 1. Available from:
http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf.
3. Pei E, Li J, Lu C, Xu J, Tang T, Ye M, et al. Effects of lipids and lipoproteins on diabetic foot in people with type 2 diabetes mellitus: a meta-analysis. J Diabetes Complicat. 2014; 28(4):559–564.
Article
4. Zaugg SD, Dogbey G, Collins K, Reynolds S, Batista C, Brannan G, et al. Diabetes numeracy and blood glucose control: association with type of diabetes and source of care. Clin Diabetes. 2014; 32(4):152–157.
Article
5. Nielsen DS, Krych L, Buschard K, Hansen CH, Hansen AK. Beyond genetics: Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014; 588(22):4234–4243.
Article
6. Manzella D, Grella R, Abbatecola AM, Paolisso G. Repaglinide administration improves brachial reactivity in type 2 diabetic patients. Diabetes Care. 2005; 28(2):366–371.
Article
7. Zhuo X, Zhang P, Barker L, Albright A, Thompson TJ, Gregg E. The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care. 2014; 37(9):2557–2564.
Article
8. Chavey A, Ah Kioon MD, Bailbe D, Movassat J, Portha B. Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes. Diabetes Metab. 2014; 40(5):323–330.
Article
9. Mohan D, Raj D, Shanthirani CS, Datta M, Unwin NC, Kapur A, et al. Awareness and knowledge of diabetes in Chennai: the Chennai Urban Rural Epidemiology Study [CURES-9]. J Assoc Physicians India. 2005; 53:283–287.
10. Hadaegh F, Bozorgmanesh MR, Ghasemi A, Harati H, Saadat N, Azizi F. High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study. BMC Public Health. 2008; 8:176.
Article
11. Ofman JJ, Badamgarav E, Henning JM, Knight K, Gano AD Jr, Levan RK, et al. Does disease management improve clinical and economic outcomes in patients with chronic diseases? A systematic review. Am J Med. 2004; 117(3):182–192.
Article
12. Baan CA, Ruige JB, Stolk RP, Witteman JC, Dekker JM, Heine RJ, et al. Performance of a predictive model to identify undiagnosed diabetes in a health care setting. Diabetes Care. 1999; 22(2):213–219.
Article
13. Asche C, LaFleur J, Conner C. A review of diabetes treatment adherence and the association with clinical and economic outcomes. Clin Ther. 2011; 33(1):74–109.
Article
14. Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open. 2012; 2(4):e001667.
15. Gray AR, MacDonell SG. A comparison of techniques for developing predictive models of software metrics. Inf Softw Technol. 1997; 39(6):425–437.
Article
16. Narasingarao MR, Sridhar GR, Madhu K, Rao AA. A clinical decision support system using multi-layer perceptron neural network to predict quality of life in diabetes. J Assoc Physicians India. 2010; 4(1):127–133.
17. Karan O, Bayraktar C, Gumuskaya H, Karlik B. Diagnosing diabetes using neural networks on small mobile devices. Expert Syst Appl. 2012; 39(1):54–60.
Article
18. Kang JO, Chung SH, Suh YM. Prediction of hospital charges for the cancer patients with data mining techniques. J Korean Soc Med Inform. 2009; 15(1):13–23.
Article
19. Tahmasebi P, Hezarkhani A. A hybrid neural networksfuzzy logic-genetic algorithm for grade estimation. Comput Geosci. 2012; 42:18–27.
Article
20. Mahmoudabadi H, Izadi M, Menhaj MB. A hybrid method for grade estimation using genetic algorithm and neural networks. Comput Geosci. 2009; 13(1):91–101.
Article
21. Cho SB. Fusion of neural networks with fuzzy logic and genetic algorithm. Integr Comput Aided Eng. 2002; 9(4):363–372.
Article
22. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 1990; 13(7):259–265.
Article
23. Wang C, Li L, Wang L, Ping Z, Flory MT, Wang G, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract. 2013; 100(1):111–118.
Article