Hanyang Med Rev.  2016 May;36(2):86-91. 10.7599/hmr.2016.36.2.86.

Functional Imaging of Tinnitus

Affiliations
  • 1Department of Otorhinolaryngology, Hallym University Sacred Heart Hospital, Anyang, Korea. hyojlee@hallym.ac.kr
  • 2Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, Korea.

Abstract

Tinnitus is an auditory phantom characterized by the perception of sound without the presence of an external acoustical source. The peripheral auditory system is considered to contribute to the initiation of tinnitus but only explains the severity and distress level to a limited degree. The neuropsychological models of tinnitus have been developed to explain the pathophysiology of tinnitus as a malfunctioning feedforward/feedback signal in the central neural system including the auditory brainstem, limbic system, auditory cortices, and other anatomical features. Functional neuroimaging techniques have been introduced in recent decades and have provided non-invasive tools to assess the working human brain in vivo. Researchers have found these techniques valuable in examining the neural correlates of tinnitus and have been able to not only support the neuropsychological model but to expand it. Though neuroimaging studies on tinnitus only began in 1990s, they have been increasing exponentially in number. In this review, we investigate the current state of functional neuroimaging studies on tinnitus in humans. The characteristics of commonly used functional neuroimaging techniques including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG) are also discussed. We briefly review recent studies on the tinnitus-brain relationship that have used those research tools.

Keyword

Tinnitus; Functional Neuroimaging; Positron-Emission Tomography (PET); Magnetic Resonance Imaging (MRI); Electroencephalography (EEG)

MeSH Terms

Brain
Brain Stem
Electroencephalography
Functional Neuroimaging
Humans
Limbic System
Magnetic Resonance Imaging
Magnetoencephalography
Neuroimaging
Positron-Emission Tomography
Tinnitus*

Reference

1. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990; 8:221–254.
Article
2. Axelsson A, Ringdahl A. Tinnitus—a study of its prevalence and characteristics. Br J Audiol. 1989; 23:53–62.
Article
3. Shargorodsky J, Curhan GC, Farwell WR. Prevalence and characteristics of tinnitus among US adults. Am J Med. 2010; 123:711–718.
Article
4. Park RJ, Moon JD. Prevalence and risk factors of tinnitus: the Korean National Health and Nutrition Examination Survey 2010-2011, a cross-sectional study. Clin Otolaryngol. 2014; 39:89–94.
Article
5. Chandler JR. Diagnosis and cure of venous hum tinnitus. Laryngoscope. 1983; 93:892–895.
Article
6. Liyanage SH, Singh A, Savundra P. Pulsatile tinnitus. J Laryngol Otol. 2006; 120:93–97.
Article
7. House JW, Brackman DE. Tinnitus: surgical treatment. Ciba Found Symp. 1981; 85:204–216.
8. Brackmann DE, Barrs DM. Assessing recovery of facial function following acoustic neuroma surgery. Otolaryngol Head Neck Surg. 1984; 92:88–93.
Article
9. Rachakonda T, Shimony JS, Coalson RS, Lieu JEC. Diffusion tensor imaging in children with unilateral hearing loss: a pilot study. Front Syst Neurosci. 2013; 8:87–87.
Article
10. Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 2003; 183:137–153.
Article
11. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci. 2004; 27:676–682.
Article
12. Weber B, Späth N, Wyss M, Wild D. Quantitative cerebral blood flow measurements in the rat using a beta-probe and H215O. J Cereb Blood Flow Metab. 2003; 23:1455–1460.
Article
13. Johnsrude IS, Giraud AL, Frackowiak RS. Functional imaging of the auditory system: the use of positron emission tomography. Audiol Neurootol. 2002; 7:251–276.
Article
14. Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, et al. Cortical Activity at Rest Predicts Cochlear Implantation Outcome. Cerebral Cortex. 2006; 17:909–917.
Article
15. Lanting CP, de Kleine E, Bartels H, van Dijk P. Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol. 2008; 128:415–421.
Article
16. Lanting CP. Functional Magnetic Resonance Imaging of Tinnitus. 2010. 5:p. 1–176.
17. Lystad RP, Pollard H. Functional neuroimaging: a brief overview and feasibility for use in chiropractic research. J Can Chiropr Assoc. 2009; 53:59–72.
18. Viirre ES. Quantitative electroencephalography for tinnitus--a means for data collection, analysis, and translation. Int Tinnitus J. 2009; 15:149–153.
19. Hansen P, Kringelbach M, Salmelin R. MEG: an introduction to methods. 2010.
20. Arnold W, Bartenstein P, Oestreicher E, Römer W, Schwaiger M. Focal Metabolic Activation in the Predominant Left Auditory Cortex in Patients Suffering from Tinnitus: a PET Study with [18F]Deoxyglucose. ORL J Otorhinolaryngol Relat Spec. 1996; 58:195–199.
Article
21. Langguth B, Eichhammer P, Kreutzer A, Maenner P, Marienhagen J, Kleinjung T, et al. The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus--first results from a PET study. Acta Otolaryngol Suppl. 2006; 56:84–88.
22. Wang H, Tian J, Yin D, Jiang S, Yang W, Han D, et al. Regional glucose metabolic increases in left auditory cortex in tinnitus patients: a preliminary study with positron emission tomography. Chin Med J. 2001; 114:848–851.
23. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology. 1998; 50:114–120.
24. Giraud AL, Chery-Croze S, Fischer G, Fischer C, Vighetto A, Grégoire MC, et al. A selective imaging of tinnitus. Neuroreport. 1999; 18:1.
Article
25. Plewnia C, Reimold M, Najib A, Brehm B, Reischl G, Plontke SK, et al. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp. 2007; 28:238–246.
Article
26. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol. 2000; 83:1058–1072.
Article
27. Smits M, Kovacs S, De Ridder D, Peeters RR, Van Hecke P, Sunaert S. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology. 2007; 49:669–679.
Article
28. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation of limbic and auditory networks in tinnitus. Neuron. 2011; 69:33–43.
Article
29. Carpenter-Thompson JR, Schmidt SA, Husain FT. Neural Plasticity of Mild Tinnitus: an fMRI Investigation Comparing Those Recently Diagnosed with Tinnitus to Those That Had Tinnitus for a Long Period of Time. Neural Plast. 2015; 1:1–11.
Article
30. Golm D, Schmidt-Samoa C, Dechent P, Kröner-Herwig B. Neural correlates of tinnitus related distress: an fMRI-study. Hear Res. 2013; 295:87–99.
Article
31. Shulman A, Avitable MJ, Goldstein B. Quantitative electroencephalography power analysis in subjective idiopathic tinnitus patients: a clinical paradigm shift in the understanding of tinnitus, an electrophysiological correlate. Int Tinnitus J. 2006; 12:121–131.
32. Shulman A, Goldstein B. Quantitative electroencephalography: preliminary report--tinnitus. Int Tinnitus J. 2002; 8:77–86.
33. Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett. 2007; 426:23–28.
Article
34. Weisz N, Müller S, Schlee W. The neural code of auditory phantom perception. J Neurosci. 2007; 27:1479–1484.
Article
35. Schlee W, Hartmann T, Langguth B, Weisz N. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 2009; 10:11.
Article
36. Vanneste S, Plazier M, Loo der EV, de Heyning PV, Congedo M, De Ridder D. The neural correlates of tinnitus-related distress. Neuroimage. 2010; 52:470–480.
Article
37. Song JJ, De Ridder D, Schlee W, Van de Heyning P. "Distressed aging": the differences in brain activity between early-and late-onset tinnitus. Neurobiol Aging. 2013; 34:1853–1863.
Article
38. Song JJ, Vanneste S, Schlee W. Onset-related differences in neural substrates of tinnitus-related distress: the anterior cingulate cortex in late-onset tinnitus, and the frontal cortex in early-onset tinnitus. Brain Struct Funct. 2015; 220:571–584.
Article
39. Vanneste S, Van De Heyning P, De Ridder D. Tinnitus: a large VBM-EEG correlational study. PLoS ONE. 2015; 10:e0115122.
Article
40. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005; 2:e153.
Article
41. Seidman MD, Ridder DD, Elisevich K, Bowyer SM, Darrat I, Dria J, et al. Direct Electrical Stimulation of Heschl's Gyrus for Tinnitus Treatment. Laryngoscope. 2008; 118:491–500.
Article
42. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in tinnitus. BMC Biol. 2009; 7:80.
Article
43. Ortmann M, Müller N, Schlee W, Weisz N. Rapid increases of gamma power in the auditory cortex following noise trauma in humans. Eur J Neurosci. 2011; 33:568–575.
Article
44. Adjamian P. The application of electro- and magneto-encephalography in tinnitus research - methods and interpretations. Front Neurol. 2014; 5:228.
Article
Full Text Links
  • HMR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr