1. Gupta N, Weinreb RN. New definition of glaucoma. Curr Opin Ophthalmol. 1997; 8:38–41.
2. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995; 36:774–86.
3. Sacca SC, Pascotto A, Camicione P, et al. Oxidative DNA damage in human trabecular meshwork. Arch Ophthalmol. 2005; 123:458–63.
4. Zhou L, Li Y, Yue BY. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from an ocular tissue: the trabecular meshwork. J Cell Physiol. 1999; 180:182–9.
Article
5. Rose Rc, Richer SP, Bode AM. Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med. 1998; 217:397–407.
Article
6. Babizhayev MA, Bunin AY. Lipid peroxidation in open-angle glaucoma. Acta Ophthalmol. 1989; 67:371–7.
Article
7. Luthra A, Gupta N, Kaufman PL, et al. Oxidative injury by perox-ynitrite in neural and vascular tissue of the lateral geniculate nucleus in experimental glaucoma. Exp Eye Res. 2005; 80:43–9.
Article
8. Izzotti A, Sacca SC, Cartiglia C, De Flora S. Oxidative deoxyrib-oneucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003; 114:638–46.
9. Levin LA, Clark JA, Johns LK. Effect of lipid peroxidation inhibition on retinal ganglion cell death. Invest Ophthalmol Vis Sci. 1996; 37:2744–9.
10. Neufeld AH. Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv Ophthamol. 1999; 43:129–35.
11. Erden M, Bor NM. Changes of reduced glutathione, glutathione reductase, and glutathione peroxidase after radiation of guinea pigs. Biochem Med. 1984; 31:217–27.
12. Richer SP, Rose RC. Water soluble antioxidants in mammalian aqueous humor: interaction with UV and hydrogen peroxide. Vision Res. 1998; 38:2881–8.
13. Valencia E, Hardy G, Marin A. Glutathione: nurtritional and pharmacologic viewpoints: PartVI. Nutrition. 2002; 18:291–2.
14. Lee IS, Yu YS, Kim DM, et al. Detection of specific proteins in the aqueous humor in primary open angle glaucoma. Korean J Ophthalmol. 1990; 4:1–4.
15. Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutation Research. 2006; 612:105–14.
Article
16. Beit-Yannai E, Trembovler V, Solomon AS. Decrease in reducing power of aqueous humor originating from glaucomatous rabbits. Eye. 2007; 21:658–64.
Article
17. Becker B. Chemical composition of human aqueous humor. Arch Ophthalmol. 1957; 57:793–800.
Article
18. Mori M, Araie M, Sakurai M, et al. Effect of pilocarpine and trpicamide on blood-aqueous barrier permeability in man. Invest Ophthalmol Vis Sci. 1992; 33:416–23.
19. Richter CU, Shingleton BJ, Bellows AR, et al. The development of encapsulated filtering blebs. Ophthamology. 1988; 95:1163–8.
20. Herschler J, Claflin AJ, Fiorentino G. The effect of aqueous humor on the growth of subconjunctival fibroblasts in tissue culture and its implications for glaucoma surgery. Am J Ophthalmol. 1980; 89:245–9.
Article
21. De La Paz MA, Epstein DL. Effect of age on superoxide dismutase activity of human trabecular meshwork. Invest Ophthalmol Vis Sci. 1996; 37:1849–53.
22. Greenlund LJ, Deckwerth TL, Johnson EM Jr. Superoxide dismutase delaysneuronal apoptosis: a role for reactive oxygen sp-ecies in programmed neuronal death. Neuron. 1995; 14:303–15.
23. Lee P, Lam KW, Lai M. Aqueous humor ascorbate concentration and open-angle glaucoma. Arch Ophthalmol. 1977; 95:308–10.
Article
24. Yildirim O, Ates NA, Ercan B, et al. Role of oxidative stress enzymes in open-angle glaucoma. Eye. 2005; 19:580–3.
Article
25. Rao Na, Thaete LG, Delmage JM, Sevanian A. Superoxide dismutase in ocular structure. Invest Ophthalmol Vis Sci. 1985; 26:1778–81.
26. Ferreira SM, Lerner SF, Brunzini R, et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004; 137:62–9.
Article
27. Reiss GR, Wernss PG, Zollman PE, Brubaker RF. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthalmol. 1986; 104:735–55.
Article
28. Williams RN, Paterson CA. A protective role for ascorbic acid during inflammatory episodes in the eye. Exp Eye Res. 1986; 42:211–8.
Article
29. Moses RA, Hort WM Jr. Adler's physiology of the eye. 8th ed.St Louis: CV Mosby;1987. p. 212–22.
30. Yue BY, Higginbotham EJ, Chang IL. Ascorbic acid modulates the production of fibronectin and laminin by cells from on eye trabecular meshwork. Exp Cell Res. 1990; 187:65–8.
31. Jampel HD. Ascorbic acid is cytotoxic to dividing human Tenon's capsule fibroblast: a possible contributing factor in glaucoma filtration surgery success. Arch Ophthalmol. 1990; 108:1323–5.
32. Becker B. Ascorbate transfer in guinea pig eyes. Invest Ophthalmol. 1967; 6:410–5.
33. Lam KW, Lee P, Fox R. Aqueous ascorbate concentration in hereditary buphthalmic rabbits. Arch Ophthalmol. 1976; 94:1565–7.
Article
34. Fox RR, Lam KW, Lewen R, Lee P. Ascorbate concentration in tissues from normal and buphthalmic rabbits. J Heredity. 1982; 73:109–11.
Article
35. Lam KW, Lee PF. Analysis of ascorbateconcentration in the aqueous humor by high pressure liquid chromatography. Invest Ophthalmol. 1975; 14:947–50.
36. Fong D, Etzel K, Lee PF, et al. Factors affecting ascorbate oxi-dation in aqueous humor. Curr Eye Res. 1987; 6:357–61.
Article
37. Bar-Ilan A, Pesah NI, Maren TH. The effects of carbonic anhydrase inhibitors on aqueous humor dynamics. Invest Ophthalmol Vis Sci. 1984; 25:1198–205.
38. Krohne SG. Effect of topically applied 2% pilocarpine and 0.25% demecarium bromide on blood-aqueous barrier permeability in dogs. Am J Vet Res. 1994; 55:1729–33.
39. Kim DH, Kwak HW, Kim JM. Ascorbic acid determination in aqueous and vitreous humor of the rabbit. J Korean Ophthalmol Soc. 1997; 38:865–9.
40. Forster S, Mead A, Sears M. An interophthalmic communicating artery as explanation for the consensual irritative response of the rabbit eye. Invest Ophthalmol Vis Sci. 1979; 18:161–5.