Yonsei Med J.  2014 Nov;55(6):1453-1466. 10.3349/ymj.2014.55.6.1453.

Helicobacter pylori: Bacterial Strategy for Incipient Stage and Persistent Colonization in Human Gastric Niches

Affiliations
  • 1Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea. mjecho@gnu.ac.kr

Abstract

Helicobacter pylori (H. pylori) undergoes decades long colonization of the gastric mucosa of half the population in the world to produce acute and chronic gastritis at the beginning of infection, progressing to more severe disorders, including peptic ulcer disease and gastric cancer. Prolonged carriage of H. pylori is the most crucial factor for the pathogenesis of gastric maladies. Bacterial persistence in the gastric mucosa depends on bacterial factors as well as host factors. Herein, the host and bacterial components responsible for the incipient stages of H. pylori infection are reviewed and discussed. Bacterial adhesion and adaptation is presented to explain the persistence of H. pylori colonization in the gastric mucosa, in which bacterial evasion of host defense systems and genomic diversity are included.

Keyword

Helicobacter pylori; gastric infection; persistent colonization; pathogenesis

MeSH Terms

Gastric Mucosa/*microbiology
Gastritis/*microbiology/pathology
Helicobacter Infections/*microbiology
Helicobacter pylori/*physiology
Humans
Stomach Neoplasms/pathology

Reference

1. Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest. 2007; 117:60–69.
Article
2. Rhee KH, Youn HS, Baik SC, Lee WK, Cho MJ, Choi HJ, et al. Prevalence of Helicobacter pylori infection in Korea. J Korean Soc Microbiol. 1990; 25:475–490.
3. Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature. 2007; 445:915–918.
Article
4. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology. 2008; 134:1842–1860.
Article
5. Culen M, Rezacova A, Jampilek J, Dohnal J. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine. J Pharm Sci. 2013; 102:2995–3017.
Article
6. Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev. 2013; 37:736–761.
Article
7. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011; 9:265–278.
Article
8. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009; 61:158–171.
Article
9. Lang T, Hansson GC, Samuelsson T. Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci U S A. 2007; 104:16209–16214.
Article
10. Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin TH, et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 2009; 5:e1000617.
11. McGuckin MA, Every AL, Skene CD, Linden SK, Chionh YT, Swierczak A, et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology. 2007; 133:1210–1218.
Article
12. Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science. 2004; 305:1003–1006.
Article
13. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001; 280:G922–G929.
14. Powell DW. Ion and water transport in the intestine. In : Andreoli TE, Schultz SG, editors. Physiology of membrane disorders. 2nd ed. New York: Plenum;1987. p. 559–596.
15. Lehr CM, Poelma FGJ, Junginger HE, Tukker JJ. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int J Pharm. 1991; 70:235–240.
Article
16. Matsui H, Verghese MW, Kesimer M, Schwab UE, Randell SH, Sheehan JK, et al. Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol. 2005; 175:1090–1099.
Article
17. Bahari HM, Ross IN, Turnberg LA. Demonstration of a pH gradient across the mucus layer on the surface of human gastric mucosa in vitro. Gut. 1982; 23:513–516.
Article
18. Park IS, Lee YC, Park HJ, Kim TI, Lee SI, Kim H, et al. Helicobacter pylori infection in Korea. Yonsei Med J. 2001; 42:457–470.
19. Banatvala N, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and Helicobacter pylori. J Infect Dis. 1993; 168:219–221.
20. Koda YK, Laudanna AA, Barbieri D. Variation and physiological significance of basal gastrinemia in normal children. Arq Gastroenterol. 1992; 29:66–70.
21. Baik SC, Kang HL, Seo JH, Park ES, Rhee KH, Cho MJ. Helicobacter pylori urease induces mouse death. J Bacteriol Virol. 2005; 35:175–181.
22. Park JU, Song JY, Kwon YC, Chung MJ, Jun JS, Park JW, et al. Effect of the urease accessory genes on activation of the Helicobacter pylori urease apoprotein. Mol Cells. 2005; 20:371–377.
23. Joo JS, Park KC, Song JY, Kim DH, Lee KJ, Kwon YC, et al. A thin-layer liquid culture technique for the growth of Helicobacter pylori. Helicobacter. 2010; 15:295–302.
Article
24. Weeks DL, Eskandari S, Scott DR, Sachs G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science. 2000; 287:482–485.
Article
25. Pflock M, Kennard S, Finsterer N, Beier D. Acid-responsive gene regulation in the human pathogen Helicobacter pylori. J Biotechnol. 2006; 126:52–60.
Article
26. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, et al. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules. 2007; 8:1580–1586.
Article
27. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci U S A. 2009; 106:14321–14326.
Article
28. Karim QN, Logan RP, Puels J, Karnholz A, Worku ML. Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J Clin Pathol. 1998; 51:623–628.
Article
29. Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell. 2010; 141:822–833.
Article
30. Sycuro LK, Rule CS, Petersen TW, Wyckoff TJ, Sessler T, Nagarkar DB, et al. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol Microbiol. 2013; 90:869–883.
Article
31. Specht M, Schätzle S, Graumann PL, Waidner B. Helicobacter pylori possesses four coiled-coil-rich proteins that form extended filamentous structures and control cell shape and motility. J Bacteriol. 2011; 193:4523–4530.
Article
32. O'Toole PW, Lane MC, Porwollik S. Helicobacter pylori motility. Microbes Infect. 2000; 2:1207–1214.
33. Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol. 1993; 38:371–377.
Article
34. Blair DF. Flagellar movement driven by proton translocation. FEBS Lett. 2003; 545:86–95.
Article
35. Schoenhofen IC, Lunin VV, Julien JP, Li Y, Ajamian E, Matte A, et al. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J Biol Chem. 2006; 281:8907–8916.
Article
36. Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol. 1986; 168:1172–1179.
Article
37. Lloyd SA, Tang H, Wang X, Billings S, Blair DF. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol. 1996; 178:223–231.
Article
38. Sockett H, Yamaguchi S, Kihara M, Irikura VM, Macnab RM. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J Bacteriol. 1992; 174:793–806.
Article
39. Hessey SJ, Spencer J, Wyatt JI, Sobala G, Rathbone BJ, Axon AT, et al. Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut. 1990; 31:134–138.
Article
40. Odenbreit S. Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host. Int J Med Microbiol. 2005; 295:317–324.
Article
41. Carlsohn E, Nyström J, Bölin I, Nilsson CL, Svennerholm AM. HpaA is essential for Helicobacter pylori colonization in mice. Infect Immun. 2006; 74:920–926.
Article
42. Doig P, Austin JW, Trust TJ. The Helicobacter pylori 19.6-kilodalton protein is an iron-containing protein resembling ferritin. J Bacteriol. 1993; 175:557–560.
Article
43. Kolenbrander PE. Environmental sensing mechanisms and virulence factors of bacterial pathogen. In : Collier L, Balows A, Sussman M, editors. Topley & Wilson's microbiology and microbial infections: systematic bacteriology. 9th ed. Lodon, Sydney, and Auckland: Arnold;1998. p. 307–326.
44. Doig P, de Jonge BL, Alm RA, Brown ED, Uria-Nickelsen M, Noonan B, et al. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol Mol Biol Rev. 1999; 63:675–707.
Article
45. Moran AP, Lindner B, Walsh EJ. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J Bacteriol. 1997; 179:6453–6463.
Article
46. Stead C, Tran A, Ferguson D Jr, McGrath S, Cotter R, Trent S. A novel 3-deoxy-D-manno-octulosonic acid (Kdo) hydrolase that removes the outer Kdo sugar of Helicobacter pylori lipopolysaccharide. J Bacteriol. 2005; 187:3374–3383.
Article
47. Stead CM, Zhao J, Raetz CR, Trent MS. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol. 2010; 78:837–852.
Article
48. Aspinall GO, Monteiro MA. Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry. 1996; 35:2498–2504.
Article
49. Hiratsuka K, Logan SM, Conlan JW, Chandan V, Aubry A, Smirnova N, et al. Identification of a D-glycero-D-manno-heptosyltransferase gene from Helicobacter pylori. J Bacteriol. 2005; 187:5156–5165.
Article
50. Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF. Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog. 2010; 6:e1000819.
51. Monteiro MA, St Michael F, Rasko DA, Taylor DE, Conlan JW, Chan KH, et al. Helicobacter pylori from asymptomatic hosts expressing heptoglycan but lacking Lewis O-chains: Lewis blood-group O-chains may play a role in Helicobacter pylori induced pathology. Biochem Cell Biol. 2001; 79:449–459.
Article
52. Wang G, Ge Z, Rasko DA, Taylor DE. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol Microbiol. 2000; 36:1187–1196.
53. Nilsson C, Skoglund A, Moran AP, Annuk H, Engstrand L, Normark S. An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc Natl Acad Sci U S A. 2006; 103:2863–2868.
Article
54. Simoons-Smit IM, Appelmelk BJ, Verboom T, Negrini R, Penner JL, Aspinall GO, et al. Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J Clin Microbiol. 1996; 34:2196–2200.
Article
55. Monteiro MA, Zheng P, Ho B, Yokota S, Amano K, Pan Z, et al. Expression of histo-blood group antigens by lipopolysaccharides of Helicobacter pylori strains from asian hosts: the propensity to express type 1 blood-group antigens. Glycobiology. 2000; 10:701–713.
Article
56. Pohl MA, Romero-Gallo J, Guruge JL, Tse DB, Gordon JI, Blaser MJ. Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice. J Exp Med. 2009; 206:3061–3072.
Article
57. Moran AP. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr Res. 2008; 343:1952–1965.
Article
58. Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol. 2006; 8:44–54.
Article
59. Radziejewska I, Borzym-Kluczyk M, Leszczyńska K. Are Lewis b and H type 1 on Helicobacter pylori involved in binding of bacteria to MUC1 mucin? Adv Clin Exp Med. 2013; 22:347–353.
60. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun. 2000; 68:4155–4168.
Article
61. Falk P, Roth KA, Borén T, Westblom TU, Gordon JI, Normark S. An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc Natl Acad Sci U S A. 1993; 90:2035–2039.
Article
62. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 1998; 279:373–377.
Article
63. Hennig EE, Allen JM, Cover TL. Multiple chromosomal loci for the babA gene in Helicobacter pylori. Infect Immun. 2006; 74:3046–3051.
Article
64. Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D, Roche N, et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science. 2004; 305:519–522.
Article
65. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci U S A. 2004; 101:2106–2111.
Article
66. Styer CM, Hansen LM, Cooke CL, Gundersen AM, Choi SS, Berg DE, et al. Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect Immun. 2010; 78:1593–1600.
Article
67. Senkovich OA, Yin J, Ekshyyan V, Conant C, Traylor J, Adegboyega P, et al. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun. 2011; 79:3106–3116.
Article
68. Kim KM, Lee SG, Joo JS, Kwon YC, Bea DW, Song JY, et al. Proteomic analysis of Helicobacter pylori J99 outer membrane protein by Tandem Mass Spectrometry. J Bacteriol Virol. 2008; 38:53–60.
Article
69. de Jonge R, Durrani Z, Rijpkema SG, Kuipers EJ, van Vliet AH, Kusters JG. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J Med Microbiol. 2004; 53(Pt 5):375–379.
Article
70. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science. 2002; 297:573–578.
Article
71. Yanai A, Maeda S, Hikiba Y, Shibata W, Ohmae T, Hirata Y, et al. Clinical relevance of Helicobacter pylori sabA genotype in Japanese clinical isolates. J Gastroenterol Hepatol. 2007; 22:2228–2232.
Article
72. Dossumbekova A, Prinz C, Mages J, Lang R, Kusters JG, Van Vliet AH, et al. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J Infect Dis. 2006; 194:1346–1355.
Article
73. Sharma SA, Tummuru MK, Blaser MJ, Kerr LD. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol. 1998; 160:2401–2407.
74. Yamaoka Y, Kudo T, Lu H, Casola A, Brasier AR, Graham DY. Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection. Gastroenterology. 2004; 126:1030–1043.
Article
75. Tabassam FH, Graham DY, Yamaoka Y. OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization. Cell Microbiol. 2008; 10:1008–1020.
Article
76. Teymournejad O, Mobarez AM, Hassan ZM, Moazzeni SM, Ahmadabad HN. In vitro suppression of dendritic cells by Helicobacter pylori OipA. Helicobacter. 2014; 19:136–143.
Article
77. Matteo MJ, Armitano RI, Granados G, Wonaga AD, Sánches C, Olmos M, et al. Helicobacter pylori oipA, vacA and dupA genetic diversity in individual hosts. J Med Microbiol. 2010; 59(Pt 1):89–95.
Article
78. Peck B, Ortkamp M, Diehl KD, Hundt E, Knapp B. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res. 1999; 27:3325–3333.
Article
79. Lehours P, Ménard A, Dupouy S, Bergey B, Richy F, Zerbib F, et al. Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosa-associated lymphoid tissue lymphoma. Infect Immun. 2004; 72:880–888.
Article
80. Giannakis M, Bäckhed HK, Chen SL, Faith JJ, Wu M, Guruge JL, et al. Response of gastric epithelial progenitors to Helicobacter pylori Isolates obtained from Swedish patients with chronic atrophic gastritis. J Biol Chem. 2009; 284:30383–30394.
Article
81. Kennemann L, Brenneke B, Andres S, Engstrand L, Meyer TF, Aebischer T, et al. In vivo sequence variation in HopZ, a phase-variable outer membrane protein of Helicobacter pylori. Infect Immun. 2012; 80:4364–4373.
Article
82. Kim KM, Lee SG, Cho YA, Song YG, Song JY, Kang HL, et al. Identification of Helicobacter pylori Strain 51 major outer membrane proteins by Quadrupole Time of Flight Mass Spectrometry. J Bacteriol Virol. 2010; 40:103–109.
Article
83. Yuk JM, Jo EK. Toll-like receptors and innate immunity. J Bacteriol Virol. 2011; 41:225–235.
Article
84. Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog. 2011; 7:e1002454.
85. Gewirtz AT, Yu Y, Krishna US, Israel DA, Lyons SL, Peek RM Jr. Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J Infect Dis. 2004; 189:1914–1920.
Article
86. Otani K, Tanigawa T, Watanabe T, Nadatani Y, Sogawa M, Yamagami H, et al. Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochem Biophys Res Commun. 2012; 426:342–349.
Article
87. Luther J, Dave M, Higgins PD, Kao JY. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm Bowel Dis. 2010; 16:1077–1084.
Article
88. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003; 197:7–17.
Article
89. Hitzler I, Sayi A, Kohler E, Engler DB, Koch KN, Hardt WD, et al. Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1β and IL-18. J Immunol. 2012; 188:3594–3602.
Article
90. Song CH, Jo EK, Kim SH, Kim HJ, Suhr JW, Paik TH, et al. Increased IL-12, but depressed IL-18 production after in vitro stimulation with a 30-kDa mycobacterial antigen in tuberculous pleural mononuclear cells. J Bacteriol Virol. 2001; 31:239–248.
91. Oertli M, Noben M, Engler DB, Semper RP, Reuter S, Maxeiner J, et al. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A. 2013; 110:3047–3052.
Article
92. Song JY, Choi YJ, Kim JM, Kim YR, Jo JS, Park JS, et al. Purification and characterization of Helicobacter pylori gamma-glutamyltranspeptidase. J Bacteriol Virol. 2011; 41:255–265.
Article
93. Park JW, Lee SG, Song JY, Jun JS, Joo JS, Youn HS, et al. Proteomic analysis of Helicobacter pylori whole cell proteins using the narrow range IPG strips. J Bacteriol Virol. 2007; 37:203–212.
Article
94. Cho MJ, Jeon BS, Park JW, Jung TS, Song JY, Lee WK, et al. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis. 2002; 23:1161–1173.
Article
95. Boneca IG, de Reuse H, Epinat JC, Pupin M, Labigne A, Moszer I. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res. 2003; 31:1704–1714.
Article
96. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999; 397:176–180.
Article
97. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A. 2000; 97:14668–14673.
Article
98. Song JY, Lee WK, Cho MJ, Baik SC, Park JU, Kang HL, et al. Analysis of cag pathogenicity Island of Helicobacter pylori Korean isolate. J Bacteriol Virol. 2002; 32:315–330.
99. Kang HL, Park JU, Choe MY, Kim KM, Kim DS, Kwan YC, et al. RFLP analysis of cag7 gene of Helicobacter pylori. J Bacteriol Virol. 2004; 34:171–180.
100. Lee KJ, Kim BR, Cho YA, Song YG, Song JY, Lee KH, et al. Comparison of proteome components of Helicobacter pylori before and after mouse passage. J Bacteriol Virol. 2011; 41:267–278.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr