1. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996; 9:148–165.
Article
2. Gehrlein M, Leying H, Cullman W, Wendt S, Opferkuch W. Imipenem resistance in
Acinetobacter baumannii is due to altered penicillin binding proteins. Chemotherapy. 1991; 37:405–412.
Article
3. Urban C, Go E, Mariano N, Rahal JJ. Interactions of sulbactam, clavulanic acid and tazobactam with penicillin binding proteins of imipenem-resistant and susceptibile
Acinetobacter baumannii. FEMS Microbiol Lett. 1995; 125:193–197.
Article
4. Clark RB. Imipenem resistance among
Acinetobacter baumannii association with reduced expression of a 33-36 kDa outer membrane protein. J Antimicrob Chemother. 1996; 38:245–251.
Article
5. Walsh TR. Emerging carbapenemase: a global perspective. Int J Antimicrob Agents. 2010; 36:Suppl 3. S8–S14.
6. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17:1791–1798.
7. Carrër A, Frotineau N, Nordmann P. Use of ChromID extended-spectrum β-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2010; 48:1913–1914.
Article
8. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty-three informational supplement (M100-S23). Wayne, PA, USA: CLSI;2013.
9. Bae IK, Jang SJ, Kim J, Jeong SH, Cho B, Lee K. Interspecies dissemination of the
bla gene encoding PER-1 extended-spectrum β-lactamase. Antimicrob Agents Chemother. 2011; 55:1305–1307.
Article
10. Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, Western JS, Caeiro JP, Garey KW. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010; 54:1160–1164.
Article
11. Park KO, Son HC, Bae IK, Jeong SH. Molecular epidemiology of infection caused by OXA-23 or IMP-1 β-lactamase-producing Acinetobacter baumannii. Korean J Clin Microbiol. 2005; 8:121–129.
12. Bae IK, Lee YN, Jeong SH, Lee K, Yong D, Lee J, Hong SG, Park YJ, Choi TY, Uh Y, Shin JH, Lee WG, Ahn JY, Lee SH, Woo GJ, Kwak HS. Emergence of CTX-M-12, PER-1 and OXA-30 β-lactamase-producing Klebsiella pneumoniae. Korean J Clin Microbiol. 2006; 9:102–109.
13. Rhee JY, Park YK, Shin JY, Choi JY, Lee MY, Peck KR, Song JH, Ko KS. KPC-producing extreme drug-resistant
Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother. 2010; 54:2278–2279.
Article
14. Roh KH, Lee CK, Sohn JW, Song W, Yong D, Lee K. Isolation of a
Klebsiella pneumoniae isolate of sequence type 258 producing KPC-2 carbapenemase in Korea. Korean J Lab Med. 2011; 31:298–301.
Article
15. Yoo JS, Kim HM, Yoo JI, Yang JW, Kim HS, Chung GT, Lee YS. Detection of clonal KPC-2-producing
Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J Med Microbiol. 2013; 62:1338–1342.
Article
16. Hong SK, Yong D, Kim K, Hong SS, Hong SG, Khosbayar T, Song W, Roh KH, Jeong SH, Lee K, Chong Y. First outbreak of KPC-2-producing
Klebsiella pneumoniae sequence type 258 in a hospital in South Korea. J Clin Microbiol. 2013; 51:3877–3879.
Article
17. Lee Y, Kim BS, Chun J, Yong JH, Lee YS, Yoo JS, Yong D, Hong SG, D'Souza R, Thomson KS, Lee K, Chong Y. Clonality and resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing. Biomed Res Int. 2014; 2014:352862.
18. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, Song EH, Jeong SH. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of
Escherichia coli and
Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005; 56:698–702.
Article
19. Jeong SH, Bae IK, Kim D, Hong SG, Song JS, Lee JH, Lee SH. First outbreak of
Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum β-lactamases in Korea. Antimicrob Agents Chemother. 2005; 49:4809–4810.
Article
20. Kim J, Hong SG, Bae IK, Kang JR, Jeong SH, Lee W, Lee K. Emergence of
Escherichia coli sequence type ST131 carrying both the
blaGES-5 and
blaCTX-M-15 genes. Antimicrob Agents Chemother. 2011; 55:2974–2975.
Article
21. Yum JH, Yong D, Lee K, Kim HS, Chong Y. A new integron carrying VIM-2 metallo-β-lactamase gene cassette in a
Serratia marcescens isolate. Diagn Microbiol Infect Dis. 2002; 42:217–219.
Article
22. Jeong SH, Lee K, Chong Y, Yum JH, Lee SH, Choi HJ, Kim JM, Park KH, Han BH, Lee SW, Jeong TS. Characterization of a new integron containing VIM-2, a metallo-β-lactamase gene cassette, in a clinical isolate of
Enterobacter cloacae. J Antimicrob Chemother. 2003; 51:397–400.
Article
23. Lee Y, Choi H, Yum JH, Kang G, Bae IK, Jeong SH, Lee K. Molecualr mechanisms of carbapenem resistance in Enterobacter cloacae clinical isolates from Korea and clinical outcome. Ann Clin Lab Sci. 2012; 42:281–286.
24. Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, Chong Y. Nosocomial clustering of NDM-1-producing
Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012; 50:1433–1436.
Article
25. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, Song W. Clonal and horizontal spread of the
blaOXA-232 gene among
Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis. 2015; 82:70–72.
Article
26. Yoo JS, Kim HM, Koo HS, Yand JW, Yoo JI, Kim HS, Park HK, Lee YS. Nosocomial transmission of NDM-1-producing
Escherichia coli ST101 in a Korean Hospital. J Antimicrob Chemother. 2013; 68:2170–2172.
Article