Electrolyte Blood Press.  2009 Dec;7(2):38-41. 10.5049/EBP.2009.7.2.38.

Water and Sodium Regulation in Heart Failure

Affiliations
  • 1Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea. drmsk@chonnam.ac.kr

Abstract

Heart failure is the pathophysiological state characterized by ventricular dysfunction and associated clinical symptoms. Decreased cardiac output or peripheral vascular resistance lead to arterial underfilling. That is an important signal which triggers multiple neurohormonal systems to maintain adequate arterial pressure and peripheral perfusion of the vital organs. The kidney is the principal organ affected when cardiac output declines. Alterations of hemodynamics and neurohormonal systems in heart failure result in renal sodium and water retention. Activation of sympathetic nervous system, renin-angiotensin-aldosterone system and non-osmotic vasopressin release stimulate the renal tubular reabsorption of sodium and water. Dysregulation of aquaporin-2 and sodium transporters also play an important role in the pathogenesis of renal sodium and water retention.

Keyword

heart failure; aquaporins; sodium-potassium-chloride symporters; sodium chloride symporters; epithelial sodium channel

MeSH Terms

Aquaporin 2
Aquaporins
Arterial Pressure
Cardiac Output
Epithelial Sodium Channels
Heart
Heart Failure
Hemodynamics
Kidney
Perfusion
Renin-Angiotensin System
Retention (Psychology)
Sodium
Sodium Chloride Symporters
Sodium-Potassium-Chloride Symporters
Sympathetic Nervous System
Vascular Resistance
Vasopressins
Ventricular Dysfunction
Water-Electrolyte Imbalance
Aquaporin 2
Aquaporins
Epithelial Sodium Channels
Sodium
Sodium Chloride Symporters
Sodium-Potassium-Chloride Symporters
Vasopressins
Water-Electrolyte Imbalance

Reference

1. Ghali JK, Cooper R, Ford E. Trends in hospitalization rates for heart failure in the United States, 1973-1986. Evidence for increasing population prevalence. Arch Intern Med. 1990; 150:769–773. PMID: 2327838.
Article
2. Rea ME, Dunlap ME. Renal hemodynamics in heart failure: implications for treatment. Curr Opin Nephrol Hypertens. 2008; 17:87–92. PMID: 18090676.
Article
3. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999; 341:577–585. PMID: 10451464.
Article
4. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med. 1988; 319:1065–1072. PMID: 3050518.
Article
5. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol. 1982; 49:1659–1666. PMID: 7044086.
Article
6. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986; 73:615–621. PMID: 3948363.
Article
7. Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976; 57:1104–1107. PMID: 947953.
Article
8. DiBona GF. Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol. 1977; 233:F73–F81. PMID: 329687.
Article
9. Barajas L, Powers KV. Innervation of the thick ascending limb of Henle. Am J Physiol. 1988; 255:F340–F348. PMID: 3407785.
Article
10. Lee J, Yoo K, Kim SW, et al. Decreased expression of aquaporin water channels in denervated rat kidney. Nephron Physiol. 2006; 103:p170–p178. PMID: 16636595.
Article
11. DiBona GF, Herman PJ, Sawin LL. Neural control of renal function in edema-forming states. Am J Physiol. 1988; 254:R1017–R1024. PMID: 3381907.
Article
12. Sica DA. Sodium and water retention in heart failure and diuretic therapy: basic mechanisms. Cleve Clin J Med. 2006; 73(Suppl 2):S2–S7. PMID: 16786906.
Article
13. Watkins L Jr, Burton JA, Haber E, Cant JR, Smith FW, Barger AC. The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. J Clin Invest. 1976; 57:1606–1617. PMID: 180056.
Article
14. Liu FY, Cogan MG. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987; 80:272–275. PMID: 3597776.
Article
15. Abassi ZA, Kelly G, Golomb E, Klein H, Keiser HR. Losartan improves the natriuretic response to ANF in rats with high-output heart failure. J Pharmacol Exp Ther. 1994; 268:224–230. PMID: 8301562.
16. Hensen J, Abraham WT, Durr JA, Schrier RW. Aldosterone in congestive heart failure: analysis of determinants and role in sodium retention. Am J Nephrol. 1991; 11:441–446. PMID: 1840232.
Article
17. Dunn BR, Ichikawa I, Pfeffer JM, Troy JL, Brenner BM. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res. 1986; 59:237–246. PMID: 2945668.
Article
18. Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987; 326:697–698. PMID: 2951600.
Article
19. Sonnenberg H, Honrath U, Chong CK, Wilson DR. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol. 1986; 250:F963–F966. PMID: 2940876.
Article
20. Cuneo RC, Espiner EA, Nicholls MG, Yandle TG, Livesey JH. Effect of physiological levels of atrial natriuretic peptide on hormone secretion: inhibition of angiotensin-induced aldosterone secretion and renin release in normal man. J Clin Endocrinol Metab. 1987; 65:765–772. PMID: 2821056.
Article
21. Burnett JC Jr, Kao PC, Hu DC, et al. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science. 1986; 231:1145–1147. PMID: 2935937.
Article
22. Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure. Circulation. 1993; 88:1004–1009. PMID: 8353861.
Article
23. Cody RJ, Atlas SA, Laragh JH, et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest. 1986; 78:1362–1374. PMID: 2945832.
Article
24. Szatalowicz VL, Arnold PE, Chaimovitz C, Bichet D, Berl T, Schrier RW. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med. 1981; 305:263–266. PMID: 7242616.
Article
25. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem. 1998; 273:4296–4299. PMID: 9468475.
Article
26. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993; 90:11663–11667. PMID: 8265605.
Article
27. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995; 92:1013–1017. PMID: 7532304.
Article
28. Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996; 271:F414–F422. PMID: 8770174.
Article
29. Ecelbarger CA, Terris J, Frindt G, et al. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol. 1995; 269:F663–F672. PMID: 7503232.
Article
30. Nielsen S, Terris J, Andersen D, et al. Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci U S A. 1997; 94:5450–5455. PMID: 9144258.
Article
31. Xu DL, Martin PY, Ohara M, et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest. 1997; 99:1500–1505. PMID: 9119993.
Article
32. Martin PY, Abraham WT, Lieming X, et al. Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J Am Soc Nephrol. 1999; 10:2165–2170. PMID: 10505693.
Article
33. Kashgarian M, Biemesderfer D, Caplan M, Forbush B 3rd. Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int. 1985; 28:899–913. PMID: 3003443.
Article
34. Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 1995; 48:1206–1215. PMID: 8569082.
Article
35. Ecelbarger CA, Terris J, Hoyer JR, Nielsen S, Wade JB, Knepper MA. Localization and regulation of the rat renal Na(+)-K(+)-2Cl- cotransporter, BSC-1. Am J Physiol. 1996; 271:F619–F628. PMID: 8853424.
Article
36. Plotkin MD, Kaplan MR, Verlander JW, et al. Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 1996; 50:174–183. PMID: 8807586.
Article
37. Hager H, Kwon TH, Vinnikova AK, et al. Immunocytochemical and immunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Renal Physiol. 2001; 280:F1093–F1106. PMID: 11352848.
38. Torp M, Brond L, Hadrup N, et al. Losartan decreases vasopressin-mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiol (Oxf). 2007; 190:339–350. PMID: 17635349.
Article
39. Lutken SC, Kim SW, Jonassen T, et al. Changes of renal AQP2, ENaC, and NHE3 in experimentally induced heart failure: response to angiotensin II AT1 receptor blockade. Am J Physiol Renal Physiol. 2009; 297:F1678–F1688. PMID: 19776175.
Full Text Links
  • EBP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr