1.Crawford GA., Chawla N., Das K., Bose S., Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 2007. 3:359–67.
Article
2.Kokubo T., Mijaji F., Kim HM., Nakamura T. Spontaneous apatite formation on chemically surface treated Ti. J Am Ceram Soc. 1996. 79:1127–9.
3.Hanawa T., Ukai H., Murakami K., Asaoka K. Structure of surface-modified layers of calcium-ion-implanted Ti-6Al-4V and Ti-56Ni. Mater Trans JIM. 1995. 36:438–44.
4.Ishizawa H., Fujino M., Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995. 29:1459–68.
Article
5.Feng B., Chen JY., Qi SK., He L., Zhao JZ., Zhang XD. Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials. 2002. 23:173–9.
Article
6.Balasundaram G., Yao C., Webster TJ. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A. 2008. 84:447–53.
7.Fini M., Cigada A., Rondelli G., Chiesa R., Giardino R., Giavaresi G., Nicoli Aldini N., Torricelli P., Vicentini B. In vitro and in vivo behaviour of Ca-and P-enriched anodized titanium. Biomaterials. 1999. 20:1587–94.
8.Ishizawa H., Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995. 29:65–72.
Article
9.Ishizawa H., Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res. 1995. 29:1071–9.
Article
10.Zhu X., Chen J., Scheideler L., Altebaeumer T., Geis-Gerstorfer J., Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs. 2004. 178:13–22.
11.Kasemo B., Lausmaa J. Metal selection and surface characteristics. In: Bra ° nemark PI, Zarb GA, Albrektsson T (eds), Tissue-integrated prostheses, Osseointegration in clinical dentistry. Chicago: Quintessence;1985. p. 99–116.
12.Yang B., Uchida M., Kim HM., Zhang X., Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004. 25:1003–10.
Article
13.Beranek R., Hidebrand H., Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolyte. Electrochemical and Solid-State Letters. 2003. 6:B12–B14.
14.Kaneco S., Chen Y., Westerhoff P., Crittenden JC. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Materials. 2007. 56:373–6.
Article
15.Wen HB., Wolke JG., de Wijn Jr., Liu Q., Cui FZ., de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials. 1997. 18:1471–8.
Article
16.Kokubo T., Ito S., Sakka S., Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J Mater Soc. 1986. 21:536–40.
Article
17.Kim KN., Bae TS., So JM. Comparison on the calcium phosphate precipitation of NaOH-treated titanium and bioglass-ceramic CaO-P2O5 system. J Korean Res Soc Dent Mater. 2001. 28:247–52.
18.Li P., Ohtsuki C., Kokubo T., Nakanishi K., Soga N., de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994. 28:7–15.
Article
19.Yang BC., Weng J., Li XD., Zhang XD. The order of calcium and phosphate ion deposition on chemically treated titanium surfaces soaked in aqueous solution. J Biomed Mater Res. 1999. 47:213–9.
Article
20.Takadama H., Kim HM., Kokubo T., Nakamura T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res. 2001. 55:185–93.
Article