J Korean Soc Spine Surg.  2014 Jun;21(2):76-83. 10.4184/jkss.2014.21.2.76.

Necessity of Whole Spine Standing Lateral Radiograph in Adults over 50 Years Old Who Have Degenerative Lumbar Disease: Comparison with Supine Lumbar Lateral Radiograph

Affiliations
  • 1Department of Orthopedic Surgery, Eulji University College of Medicine, Daejeon, Korea. hjkim@eulji.ac.kr

Abstract

STUDY DESIGN: Cross-sectional study.
OBJECTIVES
Sagittal imbalance cannot be predicted depending on the degree of lumbar lordosis. Thus, we tried to evaluate the necessity of whole spine standing lateral radiograph through comparison of the spinal and pelvic parameter between supine lumbar lateral radiograph and whole spine standing lateral radiograph. SUMMARY OF LITERATURE REVIEW: No studies in the literature compare supine lumbar lateral radiograph and whole spine standing lateral radiograph.
MATERIALS AND METHODS
We randomly selected 50 males and 50 females among the patients over the age of 50 who visited our hospital for outpatient due to degenerative lumbar disease. Lumbar lordosis (sLL/wLL), sacral slope (sSS/wSS), and pelvic tilt (sPT/wPT) were measured and compared respectively by supine lumbar lateral radiograph and whole spine standing lateral radiograph. We categorized as group AI (sLL<30degrees) and group AII (sLL> or =30degrees) by supine lumbar lateral radiograph and analyzed them. We also categorized as group BI (SVA< or =5 cm) and group BII (SVA>5 cm) by whole spine standing lateral radiograph and analyzed them.
RESULTS
There were no statistical difference in lumbar lordosis (sLL/wLL: 35.1degrees/37.7degrees) and pelvic parameter (sSS/wSS: 32degrees/31.7degrees, sPT/wPT: 24.3degrees/24.2degrees. sPI/wPI: 56.3degrees/58.2degrees) between supine lumbar lateral radiograph and whole spine standing lateral radiograph, and there were also no statistical difference between two groups (group AI & AII) in SVA, lumbar lordosis and pelvic parameter. Pelvic parameter compared by supine lumbar lateral radiograph and whole spine standing lateral radiograph based on sagittal balance was no significant difference, but lumbar lordosis appeared statistical difference.
CONCLUSION
Sagittal imbalance appears quite a lot in patients with degenerative lumbar disease and supine lateral radiograph can't reflect the whole sagittal imbalance. So, whole spine standing lateral radiograph should be performed routinely to analyze the sagittal alignment.

Keyword

Degenerative lumbar disease; Supine lumbar lateral radiograph; Whole spine standing lateral radiograph; Sagittal balance

MeSH Terms

Adult*
Animals
Cross-Sectional Studies
Female
Humans
Lordosis
Male
Outpatients
Spine*

Figure

  • Fig. 1. Fits-on-clavicle position (A, B) or cross-arm position (C, D) is recommended during taking radiographs.

  • Fig. 2. Spinal & Pelvic parameters. LL: lumbar lordosis, SS: Sacral slope, SVA: Sagittal vertical axis, PI: Pelvic incidence, PT: Pelvic tilt.

  • Fig. 3. A 53-year-old man's supine lumbar lateral radiograph (A) and whole spine lateral radiograph with SVA ≤ 5 cm (B).

  • Fig. 4. A 75-year-old woman's supine lumbar lateral radiograph (A) and whole spine lateral radiograph with SVA > 5 cm (B).


Reference

1. Benz RJ, Ibrahim ZG, Afshar P, Garfin SR. Predicting complications in elderly patients undergoing lumbar decompression. Clin Orthop Relat Res. 2001. 116–21.
Article
2. Deyo RA, Ciol MA, Cherkin DC, Loeser JD, Bigos SJ. Lumbar spine fusion. A cohort study of complications, reoperations, and resource use in the Medicare population. Spine (Phila Pa 1976). 1993; 18:1463–70.
3. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine (Phila Pa 1976). 1995; 20:1351–8.
Article
4. Vedantam R, Lenke LG, Keeney JA, Bridwell KH. Comparison of standing sagittal spinal alignment in asymptomatic adolescents and adults. Spine (Phila Pa 1976). 1998; 23:211–5.
Article
5. Propst-Proctor SL, Bleck EE. Radiographic determination of lordosis and kyphosis in normal and scoliotic children. J Pediatr Orthop. 1983; 3:344–6.
Article
6. Lenke LG, Bridwell KH, Blanke K, Baldus C, Weston J. Radiographic results of arthrodesis with Cotrel-Dubousset instrumentation for the treatment of adolescent idiopathic scoliosis. A five to ten-year followup study. J Bone Joint Surg Am. 1998; 80:807–14.
Article
7. Stagnara P, De Mauroy JC, Dran G, et al. Reciprocal an-gulation of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine (Phila Pa 1976). 1982; 7:335–42.
Article
8. Voutsinas SA, MacEwen GD. Sagittal profiles of the spine. Clin Orthop Relat Res. 1986. 235–42.
Article
9. Bernhardt M, Bridwell KH. Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine (Phila Pa 1976). 1989; 14:717–21.
Article
10. Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J. 2007; 16:1459–67.
Article
11. Kawakami M, Tamaki T, Ando M, Yamada H, Hashizume H, Yoshida M. Lumbar sagittal balance influences the clinical outcome after decompression and posterolateral spinal fusion for degenerative lumbar spondylolisthesis. Spine (Phila Pa 1976). 2002; 27:59–64.
Article
12. Korovessis P, Dimas A, Iliopoulos P, Lambiris E. Correlative analysis of lateral vertebral radiographic variables and medical outcomes study short-form health survey: a comparative study in asymptomatic volunteers versus patients with low back pain. J Spinal Disord Tech. 2002; 15:384–90.
13. Kumar MN, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 2001; 10:314–9.
Article
14. Videbaek TS, Bunger CE, Henriksen M, Neils E, Chris-tensen FB. Sagittal spinal balance after lumbar spinal fusion: the impact of anterior column support results from a randomized clinical trial with an eight- to thirteen-year radiographic followup. Spine (Phila Pa 1976). 2011; 36:183–91.
15. Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010; 19:1824–36.
Article
16. Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. European Spine Journal. 2010; 19:1824–36.
Article
17. Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. European Spine Journal. 2007; 16:1459–67.
Article
18. Kim YJ, Bridwell KH, Lenke LG, Glattes CR, Rhim S, Cheh G. Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year followup. Spine (Phila Pa 1976). 2008; 33:2179–84.
19. Faro FD, Marks MC, Pawelek J, Newton PO. Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004; 29:2284–9.
Article
20. Kim MS, Chung SW, Hwang CJ, Lee CK, Chang BS. A radiographic analysis of sagittal spinal alignment for the standardization of standing lateral position. J Korean Orthop Assoc. 2005; 40:861–8.
Article
21. Aebi M. The adult scoliosis. European Spine Journal. 2005; 14:925–48.
Article
22. Moon MS, Lee KS, Lim CI. A clinical study of degenerative lumbar scoliosis. Proc 5th Conf Lumbar Fusion and Stabilization. Tokyo, Springer-Verlag. 1993. 98–112.
23. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976). 2005; 30:682–8.
Article
24. Pritchett JW, Bortel DT. Degenerative symptomatic lumbar scoliosis. Spine (Phila Pa 1976). 1993; 18:700–3.
Article
25. Kim JH, Suk SS, Chung ER, et al. Epidemiologic study of lumbar scoliosis with plain abdominal x-ray. J Kor Soc Spine Surg. 2004; 11:246–52.
Article
26. Bridwell KH, Dewald RL. The textbook of spinal surgery. 3rd ed.Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health;2011.
27. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976). 2010; 35:2224–31.
28. Prieto L, Lamarca R, Casado A. [Assessment of the reliabil-ity of clinical findings: the intraclass correlation coefficient]. Med Clin (Barc). 1998; 110:142–5.
29. Philippot R, Wegrzyn J, Farizon F, Fessy MH. Pelvic balance in sagittal and Lewinnek reference planes in the standing, supine and sitting positions. Orthop Traumatol Surg Res. 2009; 95:70–6.
Article
30. Suzuki H, Endo K, Mizuochi J, Kobayashi H, Tanaka H, Yamamoto K. Clasped position for measurement of sagittal spinal alignment. European Spine Journal. 2010; 19:782–6.
Article
31. Jackson RP, Kanemura T, Kawakami N, Hales C. Lum-bopelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine (Phila Pa 1976). 2000; 25:575–86.
Article
32. Jackson RP, McManus AC. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine (Phila Pa 1976). 1994; 19:1611–8.
33. Legaye J, Duval-Beaupere G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998; 7:99–103.
Article
Full Text Links
  • JKSS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr