1. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992. 257:797–800.
Article
2. George AL Jr, Crackower MA, Abdalla JA, Hudson AJ, Ebers GC. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet. 1993. 3:305–310.
Article
3. Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ. ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence. Hum Mol Genet. 1998. 7:1753–1760.
Article
4. Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ. Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet. 1994. 3:941–946.
Article
5. Lehmann-Horn F, Rudel R. Molecular pathophysiology of voltage-gated ion channels. Rev Physiol Biochem Pharmacol. 1996. 128:195–268.
Article
6. Lossin C, George AL Jr. Myotonia congenita. Adv Genet. 2008. 63:25–55.
7. Lehmann-Horn F, Mailander V, Heine R, George AL. Myotonia levior is a chloride channel disorder. Hum Mol Genet. 1995. 4:1397–1402.
Article
8. Colding-Jørgensen E, Dunø M, Schwartz M, Vissing J. Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve. 2003. 27:449–455.
Article
9. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature. 2002. 415:287–294.
10. Dutzler R, Campbell EB, MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science. 2003. 300:108–112.
Article
11. Fahlke C, Desai RR, Gillani N, George AL Jr. Residues lining the inner pore vestibule of human muscle chloride channels. J Biol Chem. 2001. 276:1759–1765.
Article
12. Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat. 2002. 19:423–434.
13. Sasaki R, Ichiyasu H, Ito N, Ikeda T, Takano H, Ikeuchi T, Kuzuhara S, Uchino M, Tsuji S, Uyama E. Novel chloride channel gene mutations in two unrelated Japanese families with Becker's autosomal recessive generalized myotonia. Neuromuscul Disord. 1999. 9:587–592.
Article
14. Fialho D, Schorge S, Pucovska U, Davies NP, Labrum R, Haworth A, Stanley E, Sud R, Wakeling W, Davis MB, Kullmann DM, Hanna MG. Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain. 2007. 130:3265–3274.
Article
15. Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci. 1997. 22:12–13.
Article
16. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest. 2004. 113:274–284.
Article
17. Estévez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ. Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol. 2004. 557:363–378.
Article
18. Deymeer F, Cakirkaya S, Serdaroğlu P, Schleithoff L, Lehmann-Horn F, Rüdel R, Ozdemir C. Transient weakness and compound muscle action potential decrement in myotonia congenita. Muscle Nerve. 1998. 21:1334–1337.
Article
19. Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet. 1995. 57:1325–1334.
20. Wu FF, Ryan A, Devaney J, Warnstedt M, Korade-Mirnics Z, Poser B, Escriva MJ, Pegoraro E, Yee AS, Felice KJ, Giuliani MJ, Mayer RF, Mongini T, Palmucci L, Marino M, Rüdel R, Hoffman EP, Fahlke C. Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain. 2002. 125:2392–2407.
Article
21. Colding-Jørgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005. 32:19–34.
Article
22. Mailänder V, Heine R, Deymeer F, Lehmann-Horn F. Novel muscle chloride channel mutations and their effects on heterozygous carriers. Am J Hum Genet. 1996. 58:317–324.
23. Deymeer F, Lehmann-Horn F, Serdaroğlu P, Çakirkaya S, Benz S, Rüdel R, Ozdemir C. Electrical myotonia in heterozygous carriers of recessive myotonia congenita. Muscle Nerve. 1999. 22:123–125.
Article
24. Fialho D, Kullmann DM, Hanna MG, Schorge S. Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord. 2008. 18:869–872.
Article
25. Dunø M, Colding-Jørgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M. Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet. 2004. 12:738–743.
Article
26. Hakim CA, Thomlinson J. Myotonia congenita in pregnancy. J Obstet Gynaecol Br Commonw. 1969. 76:561–562.
Article
27. Michel P, Sternberg D, Jeannet PY, Dunand M, Thonney F, Kress W, Fontaine B, Fournier E, Kuntzer T. Comparative efficacy of repetitive nerve stimulation, exercise, and cold in differentiating myotonic disorders. Muscle Nerve. 2007. 36:643–650.
Article
28. Fournier E, Viala K, Gervais H, Sternberg D, Arzel-Hézode M, Laforêf P, Eymard B, Tabti N, Willer JC, Vial C, Fontaine B. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol. 2006. 60:356–365.
Article
29. Rüdel R, Dengler R, Ricker A, Haass A, Emser W. Improved therapy of myotonia with the lidocaine derivative tocainide. J Neurol. 1980. 222:275–278.
Article
30. Meola G, Sansone V. Therapy in myotonic disorders and in muscle channelopathies. Neurol Sci. 2000. 21:5 Suppl. S953–S961.
Article