1. Edelman R, Levine MM. Summary of an international workshop on typhoid fever. Rev Infect Dis. 1986. 8:329–349.
Article
2. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E. Comparative studies of mutations in animal isolates and experimental
in vitro- and
in vivo-selected mutants of
Salmonella spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field. Antimicrob Agents Chemother. 1999. 43:2131–2137.
Article
3. Bhutta ZA. Current concepts in the diagnosis and treatment of typhoid fever. BMJ. 2006. 333:78–82.
Article
4. Olarte J, Galindo E.
Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother. 1973. 4:597–601.
Article
5. Brown JD, Duong Hong M, Rhodes ER. Chloramphenicol-resistant
Salmonella typhi in Saigon. JAMA. 1975. 231:162–166.
Article
6. Lee K, Yong D, Yum JH, Lim YS, Chong Y, Lee BK. Abstract. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy. 2003. Abstract C2-865.
7. Lee K, Yong D, Yum JH, Lim YS, Kim HS, Lee BK, et al. Emergence of multidrug-resistant
Salmonella enterica serovar Typhi in Korea. Antimicrob Agents Chemother. 2004. 48:4130–4135.
Article
8. Shin YH, Yoo JS, Kim KS, Chung DJ, Oh KS, Lee JK, et al. In vitro antimicrobial susceptibility of Salmonella typhi, Salmonella typhimurium and Salmonella enteritidis isolated in Korea, 1997. J Korean Soc Chemother. 1998. l6:205–214.
9. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother. 1999. 44:377–380.
Article
10. Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L, Crellin J, et al. Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother. 1997. 41:647–653.
Article
11. Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004. 42:5715–5721.
Article
12. Pérez-Pérez FJ, Hanson ND. Detection of plasmidmediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–2162.
Article
13. Gupta B, Kumar R, Khurana S. Multi drug resistant Salmonella Typhi in Ludhiana (Punjab). Indian J Pathol Microbiol. 1993. 36:5–7.
14. Gautam V, Gupta NK, Chaudhary U, Arora DR. Sensitivity pattern of Salmonella serotypes in Northern India. Braz J Infect Dis. 2002. 6:281–287.
15. Jones RN, Rhomberg PR, Varnam DJ, Mathai D. A comparison of the antimicrobial activity of meropenem and selected broad-spectrum antimicrobials tested against multi-drug resistant Gram-negative bacilli including bacteraemic
Salmonella spp.: initial studies for the MYSTIC programme in India. Int J Antimicrob Agents. 2002. 20:426–431.
Article
16. Pokharel BM, Koirala J, Dahal RK, Mishra SK, Khadga PK, Tuladhar NR. Multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing
Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis. 2006. 10:434–438.
Article
17. Jean SS, Lee YT, Guo SM, Hsueh PR. Recurrent infections caused by cefotaxime- and ciprofloxacin-resistant Salmonella enterica serotype choleraesuis teated successfully with imipenem. J Infect. 2005. 51:e163–e165.
18. Mathai D, Rhomberg PR, Biedenbach DJ, Jones RN. The India Antimicrobial Resistance Study Group. Evaluation of the
in vitro activity of six broad-spectrum β-lactam antimicrobial agents tested against recent clinical isolates from India: a survey of ten medical center laboratories. Diagn Microbiol Infect Dis. 2002. 44:367–377.
Article
19. Piddock LJ, Johnson MM, Webber MA. Activity of faropenem and imipenem for ciprofloxacin-resistant bacteria. J Antimicrob Chemother. 2003. 52:500–502.
Article
20. Adinolfi LE, Utili R, Dilillo M, Tripodi MF, Attanasio V, Ruggiero G. Intracellular activity of cefamandole and aztreonam against phagocytosed
Escherichia coli and
Staphylococcus aureus. J Antimicrob Chemother. 1989. 24:927–935.
Article
21. Pruul H, Lewis G, McDonald PJ. Enhanced susceptibility of gram-negative bacteria to phagocytic killing by human polymorphonuclear leucocytes after brief exposure to aztreonam. J Antimicrob Chemother. 1998. 22:675–686.
Article
22. Bonina L, Carbone M, Matera G, Teti G, Joysey HS, Hormaeche CE, et al. Beta-lactam antibiotics (aztreonam, ampicillin, cefazolin and ceftazidime) in the control and eradication of
Salmonella typhimurium in naturally resistant and susceptible mice. J Antimicrob Chemother. 1990. 25:813–823.
Article
23. Gotuzzo E, Echevarría J, Carrillo C, Sánchez J, Grados P, Maguiña C, et al. Randomized comparison of aztreonam and chloramphenicol in treatment of typhoid fever. Antimicrob Agents Chemother. 1994. 38:558–562.
Article
24. Paradelis AG, Delidou K, Stavrakis AO, Crassaris LG. Comparative in vitro activity of aztreonam and other antimicrobial agents against Salmonella species. Drugs Exp Clin Res. 1985. 11:163–167.
25. Girgis NI, Sultan Y, Hammad O, Farid Z. Comparison of the efficacy, safety and cost of cefixime, ceftriaxone and aztreonam in the treatment of multidrug-resistant
Salmonella typhi septicemia in children. Pediatr Infect Dis J. 1995. 14:603–605.
Article
26. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999. 2:38–55.
Article
27. Paterson DL. Resistance in gram-negative bacteria: enterrobacteriaceae. Am J Med. 2006. 119:6 Suppl 1. S20–S28. discussion S62-70.