J Korean Med Sci.  2009 Jun;24(3):453-460. 10.3346/jkms.2009.24.3.453.

Cytogenetic Characterizations of Central Nervous System Tumors: The First Comprehensive Report from a Single Institution in Korea

Affiliations
  • 1Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea. jyhan@dau.ac.kr
  • 2Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea.
  • 3Department of Pathology, Dong-A University College of Medicine, Busan, Korea.
  • 4Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea.
  • 5Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan, Korea.

Abstract

The World Health Organization (WHO) classification of central nervous system (CNS) tumors incorporates morphology, cytogenetics, molecular genetics, and immunologic markers. Despite the relatively large number of CNS tumors with clonal chromosome abnormalities, only few studies have investigated cytogenetic abnormalities for CNS tumors in Korea. Thus, we investigated 119 CNS tumors by conventional G-banded karyotypes to characterize patterns of chromosomal abnormalities involving various CNS tumors, and 92.4% of them were cultured and karyotyped successfully. Totally, 51.8% of karyotypable CNS tumors showed abnormal cytogenetic results, including neuroepithelial tumors (75.0%), meningeal tumors (71.1%), pituitary adenomas (4.2%), schwannomas (44.4%), and metastatic tumors (100.0%). Glioblastomas had hyperdiploid, complex karyotypes, mainly involving chromosomes Y, 1, 2, 6, 7, 10, 12, 13, and 14. Monosomy 22 was observed in 56.4% of meningiomas. There was a significant increase in the frequencies of karyotypic complexity according to the increase of WHO grade between grades I and II (P=0.0422) or IV (P=0.0101). Abnormal karyotypes were more complex at high-grade tumors, suggesting that the karyotype reflects the biologic nature of the tumor. More detailed cytogenetic and molecular characterizations of CNS tumors contribute to better diagnostic criteria and deeper insights of tumorigenesis, eventually resulting in development of novel therapeutic strategies.

Keyword

Central Nervous System Neoplasms; Karyotype; WHO Classification; Solid Tumor; Chromosome Abnormality

MeSH Terms

Adolescent
Adult
Aged
Asian Continental Ancestry Group/*genetics
Central Nervous System Neoplasms/classification/*genetics
Child
*Chromosome Aberrations
Female
Glioblastoma/genetics
Humans
Karyotyping
Korea
Male
Meningeal Neoplasms/genetics
Middle Aged
Neurilemmoma/genetics
Pituitary Neoplasms/genetics

Reference

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005. 55:74–108.
Article
2. Levin VA, Leibel SA, Gutin PH. DeVita VT, Hellman S, Rosenberg SA, editors. Neoplasms of the central nervous system. Cancer: Principles and Practice of Oncology. 2001. 6th ed. Philadelphia: Lippincott Williams & Wilkins;2100–2160.
3. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002. 61:215–225.
Article
4. Kleihues P, Cavenee WK. World Health Organization Classification of tumors. Pathology and Genetics of Tumors of the Nervous System. 2000. Lyon: IARC Press.
5. Antinheimo J, Sallinen SL, Sallinen P, Haapasalo H, Helin H, Horelli-Kuitunen N, Wessman M, Sainio M, Jaaskelainen J, Carpen O. Genetic aberrations in sporadic and neurofibromatosis 2 (NF2)-associated schwannomas studied by comparative genomic hybridization (CGH). Acta Neurochir (Wien). 2000. 142:1099–1105.
Article
6. Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations in cancer [Internet]. Updated February 16, 2007. Available from http://cgap.nci.nih.gov/chromosomes .
7. Shaffer LG, Tommerup N, editors. ISCN (2005): An International System for Human Cytogenetic Nomenclature. 2005. Basel: S. Karger.
8. Mitelman F, Johansson B, Mandahl N, Mertens F. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet. 1997. 95:1–8.
Article
9. Mertens F, Johansson B, Hoglund M, Mitelman F. Chromosomal imbalance maps of malignant solid tumors; a cytogenetic survey of 3185 neoplasms. Cancer Res. 1997. 57:2765–2780.
10. CBTRUS. Statistical report: primary brain tumors in the United States, 1998-2002. 2005. Central Brain Tumor Registry of the United States.
11. Bhattacharjee MB, Armstrong DD, Vogel H, Cooley LD. Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet. 1997. 97:39–53.
Article
12. Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet. 2002. 135:147–159.
13. Ichimura K, Ohgaki H, Kleihues P, Collins VP. Molecular pathogenesis of astrocytic tumours. J Neurooncol. 2004. 70:137–160.
Article
14. Wessels PH, Twijnstra A, Kessels AG, Krijne-Kubat B, Theunissen PH, Ummelen MI, Ramaekers FC, Hopman AH. Gain of chromosome 7, as detected by in situ hybridization, strongly correlates with shorter survival in astrocytoma grade 2. Genes Chromosomes Cancer. 2002. 33:279–284.
Article
15. Hirose Y, Aldape KD, Chang S, Lamborn K, Berger MS, Feuerstein BG. Grade II astrocytomas are subgrouped by chromosome aberrations. Cancer Genet Cytogenet. 2003. 142:1–7.
Article
16. Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP. Refined mapping of 12q13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res. 1996. 56:5141–5145.
17. Cowell JK, Matsui S, Wang YD, LaDuca J, Conroy J, McQuaid D, Nowak NJ. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet. 2004. 151:36–51.
Article
18. Cianciulli AM, Morace E, Coletta AM, Occhipinti E, Gandolfo GM, Leonardo G, Carapella CM. Investigation of genetic alterations associated with development and adverse outcome in patients with astrocytic tumor. J Neurooncol. 2000. 48:95–101.
19. Arslantas A, Artan S, Oner U, Muslumanoglu H, Durmaz R, Cosan E, Atasoy MA, Basaran N, Tel E. The importance of genomic copy number changes in the prognosis of glioblastoma multiforme. Neurosurg Rev. 2004. 27:58–64.
Article
20. Phuphanich S, Brat DJ, Olson JJ. Delivery systems and molecular targets of mechanism-based therapies for GBM. Expert Rev Neurother. 2004. 4:649–663.
Article
21. Hill C, Hunter SB, Brat DJ. Genetic markers in glioblastoma: prognostic significance and future therapeutic implications. Adv Anat Pathol. 2003. 10:212–217.
Article
22. Jeuken JW, Sprenger SH, Vermeer H, Kappelle AC, Boerman RH, Wesseling P. Chromosomal imbalances in primary oligodendroglial tumors and their recurrences: clues about malignant progression detected using comparative genomic hybridization. J Neurosurg. 2002. 96:559–564.
Article
23. Teo C, Nakaji P, Symons P, Tobias V, Cohn R, Smee R. Ependymoma. Childs Nerv Syst. 2003. 19:270–285.
Article
24. Biegel JA, Rorke LB, Janss AJ, Sutton LN, Parmiter AH. Isochromosome 17q demonstrated by interphase fluorescence in situ hybridization in primitive neuroectodermal tumours of the central nervous system. Genes Chromosomes Cancer. 1995. 14:85–96.
25. Perry A, Gutmann DH, Reifenberger G. Molecular pathogenesis of meningiomas. J Neurooncol. 2004. 70:183–202.
Article
26. Carroll T, Maltby E, Brock I, Royds J, Timperley W, Jellinek D. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity. J Pathol. 1999. 188:395–399.
Article
27. Buckley PG, Jarbo C, Menzel U, Mathiesen T, Scott C, Gregory SG, Langford CF, Dumanski JP. Comprehensive DNA copy number profiling of meningioma using a chromosome 1 tiling path microarray identifies novel candidate tumor suppressor loci. Cancer Res. 2005. 65:2653–2661.
Article
28. Peyrard M, Fransson I, Xie YG, Han FY, Ruttledge MH, Swahn S, Collins JE, Dunham I, Collins VP, Dumanski JP. Characterization of a new member of the human beta-adaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum Mol Genet. 1994. 3:1393–1399.
29. Peyrard M, Seroussi E, Sandberg-Nordqvist AC, Xie YG, Han FY, Fransson I, Collins J, Dunham I, Kost-Alimova M, Imreh S, Dumanski JP. The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acad Sci USA. 1999. 96:598–603.
Article
30. Lekanne Deprez RH, Riegman PH, Groen NA, Warringa UL, van Biezen NA, Molijn AC, Bootsma D, de Jong PJ, Menon AG, Kley NA, Seizinger BR, Zwarthoff EC. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene. 1995. 10:1521–1528.
31. Schmitz U, Mueller W, Weber M, Sévenet N, Delattre O, von Deimling A. INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer. 2001. 84:199–201.
Article
32. Warren C, James LA, Ramsden RT, Wallace A, Baser ME, Varley JM, Evans DG. Identification of recurrent regions of chromosome loss and gain in vestibular schwannomas using comparative genomic hybridisation. J Med Genet. 2003. 40:802–806.
Article
33. Menke-Pluymers MB, van Drunen E, Vissers KJ, Mulder AH, Tilanus HW, Hagemeijer A. Cytogenetic analysis of Barrett's mucosa and adenocarcinoma of the distal esophagus and cardia. Cancer Genet Cytogenet. 1996. 90:109–117.
Article
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr