1). Lee KJ, Roper JG, Wang GC. Demineralized bone matrix and spinal arthrodesis. Spine. 2005; 5:217–223.
Article
2). Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. Spine. 2002; 2:206–215.
Article
3). Aspenberg P, Albrektsson T, Thorngren K. Local application of IGR-1 to healing bone Acta Orthop Scan. 1989; 60:607–610.
4). Cook DB, Dalton JE, Tan EH, Whitecloud TS, Rueger DC. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spine fusions. Spine. 1994; 19:1655–1664.
5). Cook SD, Dalton JE, Prewett AB, Whitecloud TS. In vivo evaluation of demineralized bone matrix as a bone graft substitute for posterior spine fusion. Spine. 1995; 20:877–886.
6). Louis-Ugbo J, Murakami H, Kim HS, Minamide A, Boden SD. Evidence of osteoinduction by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine. 2004; 29:360–366.
Article
7). Martin GJ, boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective in experimental posterolateral lumbar spine arthrodesis. Spine. 1999; 24:637–645.
8). Turner JA, Ersek M, Herron L, et al. Patient outcomes after lumbar spinal fusions. JAMA. 1992; 268:907–911.
Article
9). Yahiro MA. Comprehensive literature review: pedicle screw fixation devices. Spine. 1994; 19:2274–2278.
10). Yuan HA, Garfin SR, Dickman CA, Mardjetko SM. A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusions. Spine. 1994; 19:2279–2296.
11). Miura Y, Imagama S, Yoda M, Mitsuguchi H, Kachi H. Is local bone viable as a source of bone graft in posterior lumbar interbody fusion? Spine. 2003; 15(28):2386–2389.
Article
12). Okuyama K, Kido T, Unoki E, Chiba M. PLIF with a titanium cage and excised facet joint bone for degenerative spondylolisthesis in augmentation with a pedicle screw. J Spinal Disord Tech. 2007; 2:53–59.
13). Femyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM. Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion. Spine. 1992; 17:1474–1480.
Article
14). Russell JL, Block JE. Surgical harvesting of bone graft from the ilium: point of view. Med Hypotheses. 2000; 55:474–479.
Article
15). Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989; 3:192–195.
Article
16). Muschler GF, Lane JM. Orthopaedic surgery. Habal MB, Reddi Ah, editors. Bone grafts and bone substitutes. Philadelphia: Saunders;p. 375. 1992.
17). Urist MR. Bone formation by autoinduction. Science. 1965; 150:893–899.
Article
18). Canalis E, McCarthy T, Centrella M. Growth factors in the regulation of bone remodeling. J Clin Invest. 1988; 81:277–281.
19). Jungushi S, Heydemann A, Kana SK, Macey LR, Bolander ME. aFGF injection stimulates cartilage enlargement and inhibits collagen gene expression in a rat fracture healing model. J Orthop Res. 1990; 8:364–371.
20). Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF-β, BMP. Bone. 1996; 9:1–2.
21). Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990; 6:597–641.
Article
22). Muller R, Bravo R, Burckhardt J, Curran T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature. 1984; 312:716–720.
Article
23). Mundy GR. Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Rel Res. 1996; 324:24–28.
Article
24). Wang EA, Rosen V, Cordes P, et al. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA. 1988; 85:9484–9488.
Article
25). Ijiri S, Yamamuro T, Nakamura T, Kotani S, Notoya K. Effect of sterilization on the osteoinductive capacity of demineralized bone matrix. Clin Orthop. 2001; 388:233–239.
26). Russell JL, Block JE. Clinical utility of demineralized bone matrix for osseous defects, arthrodesis, and reconstruction: impact of processing techniques and study methodology. Orthopedics. 2004; 22:524–531.
27). Sassard WR, Eidman DK, Gray PM, et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000; 23:1059–1064.
Article
28). Shin BJ, Kin GJ, Ha SS, Chung SH, Kwon H, Kin YI. Posterior lumbar interbody fusion using laminar bone block. J Korean Soc Spine Surg. 1999; 6:110–116.
29). Shin BJ, Kim GJ, Kwon H, Suh YS, Kim YI, Rah SK. Results of PLIF using laminar chips in spinal lesions. J Korean Soc Spine Surg. 1998; 5:284–292.
30). Ahn DK, Jeong KW, Lee S, Choi DJ, Cha SK. Posterior Lumbar Interbody Fusion with chip bone and pedicle screw fixation. J Korea Orthop Assoc. 2004; 39:614–620.
31). Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine. 2004; 15(29):65–70.
32). Wang J, Glimcher M. Characterization of matrixinduced osteogenesis in rat calvarial bone defects: I. Differences in the cellular response to demineralized bone matrix implanted in calvarial defects and in subcutaneous sites. Calcif Tissu Int. 1999; 65:156–165.
Article
33). Wang J, Glimcher MJ. Charaterization of matrix induced osteogenesis in rat calvarial bone defects II Origins of bone-forming cells. Clcif Tissue Int. 1999; 65:486–493.
34). Wang J, Tang R, Gerstenfeld LC, Glimcher MJ. Characterization of demineralized bone matrix-induced osteogenesis in rat calvarial bone defects. Gene and protein expression. Calcif Tissue Int. 2000; 67:314–320.