J Cerebrovasc Endovasc Neurosurg.  2014 Dec;16(4):335-349. 10.7461/jcen.2014.16.4.335.

A Comparative Review of the Hemodynamics and Pathogenesis of Cerebral and Abdominal Aortic Aneurysms: Lessons to Learn From Each Other

Affiliations
  • 1Department of Neurosurgery, New York University School of Medicine, NY, United States.
  • 2Foundation for Research and Technology - Hellas Institute of Applied and Computational Mathematics, Crete, Greece.
  • 3Toshiba Stroke Research Center, University at Buffalo, NY, United States. huimeng@buffalo.edu
  • 4Department of Mechanical and Aerospace Engineering, University at Buffalo, NY, United States.
  • 5Department of Neurosurgery, University at Buffalo, NY, United States.

Abstract


OBJECTIVE
Cerebral aneurysms (CAs) and abdominal aortic aneurysms (AAAs) are degenerative vascular pathologies that manifest as abnormal dilations of the arterial wall. They arise with different morphologies in different types of blood vessels under different hemodynamic conditions. Although treated as different pathologies, we examine common pathways in their hemodynamic pathogenesis in order to elucidate mechanisms of formation.
MATERIALS AND METHODS
A systematic review of the literature was performed. Current concepts on pathogenesis and hemodynamics were collected and compared.
RESULTS
CAs arise as saccular dilations on the cerebral arteries of the circle of Willis under high blood flow, high wall shear stress (WSS), and high wall shear stress gradient (WSSG) conditions. AAAs arise as fusiform dilations on the infrarenal aorta under low blood flow, low, oscillating WSS, and high WSSG conditions. While at opposite ends of the WSS spectrum, they share high WSSG, a critical factor in arterial remodeling. This alone may not be enough to initiate aneurysm formation, but may ignite a cascade of downstream events that leads to aneurysm development. Despite differences in morphology and the structure, CAs and AAAs share many histopathological and biomechanical characteristics. Endothelial cell damage, loss of elastin, and smooth muscle cell loss are universal findings in CAs and AAAs. Increased matrix metalloproteinases and other proteinases, reactive oxygen species, and inflammation also contribute to the pathogenesis of both aneurysms.
CONCLUSION
Our review revealed similar pathways in seemingly different pathologies. We also highlight the need for cross-disciplinary studies to aid in finding similarities between pathologies.

Keyword

Cerebral aneurysms; Abdominal aortic aneurysms; Blood flow; Hemodynamics; Pathogenesis; Endothelial cells; Inflammation

MeSH Terms

Aneurysm
Aorta
Aortic Aneurysm, Abdominal*
Blood Vessels
Cerebral Arteries
Circle of Willis
Elastin
Endothelial Cells
Hemodynamics*
Inflammation
Intracranial Aneurysm
Matrix Metalloproteinases
Myocytes, Smooth Muscle
Pathology
Peptide Hydrolases
Reactive Oxygen Species
Elastin
Matrix Metalloproteinases
Peptide Hydrolases
Reactive Oxygen Species

Figure

  • Fig. 1 This depicts a cerebral artery bifurcation and serves as a representation of impinging flow at the apex of the bifurcation (A) and acceleration zone with high wall shear stress and high wall shear stress gradient (B). This image is adapted from Meng, et al., 2007.75)

  • Fig. 2 A representation of laminar flow adjacent to an arterial wall during a systole-diastole phase resulting in retrograde flow.

  • Fig. 3 A computational fluid dynamic representation of an early stage abdominal aortic aneurysm (A) and a cerebral bifurcation with proximal stenosis (B) and a formed cerebral aneurysm (C). Scale represents wall shear stress (dyns/cm2). The images shown in B and C are taken from Kono, et al., 2013.56)

  • Fig. 4 Comparison of the proposed pathological mechanisms of cerebral and abdominal aortic aneurysm formation.


Reference

1. Andrews RJ, Spiegel PK. Intracranial aneurysms. Age, sex, blood pressure, and multiplicity in an unselected series of patients. J Neurosurg. 1979; 7. 51(1):27–32. PMID: 448414.
2. Atlas SW. Magnetic resonance imaging of intracranial aneurysms. Neuroimaging Clin N Am. 1997; 11. 7(4):709–720. PMID: 9336495.
Article
3. Austin G, Fisher S, Dickson D, Anderson D, Richardson S. The significance of the extracellular matrix in intracranial aneurysms. Ann Clin Lab Sci. 1993; Mar-Apr. 23(2):97–105. PMID: 7681275.
4. Baharoglu MI, Schirmer CM, Hoit DA, Gao BL, Malek AM. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis. Stroke. 2010; 7. 41(7):1423–1430. PMID: 20508183.
5. Becske T, Kallmes DF, Saatci I, McDougall CG, Szikora I, Lanzino G, et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology. 2013; 6. 267(3):858–868. PMID: 23418004.
Article
6. Bengtsson H, Sonesson B, Bergqvist D. Incidence and prevalence of abdominal aortic aneurysms, estimated by necropsy studies and population screening by ultrasound. Ann N Y Acad Sci. 1996; 11. 800:1–24. PMID: 8958978.
Article
7. Bogren HG, Buonocore MH. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J Magn Reson Imaging. 1994; Mar-Apr. 4(2):119–130. PMID: 8180449.
Article
8. Bonita R, Thomson S. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. Stroke. 1985; Jul-Aug. 16(4):591–594. PMID: 4024173.
Article
9. Bonneville F, Sourour N, Biondi A. Intracranial aneurysms: an overview. Neuroimaging Clin N Am. 2006; 8. 16(3):371–382. viiPMID: 16935705.
Article
10. Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT. UK Small Aneurysm Trial Participants. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation. 2004; 7. 110(1):16–21. PMID: 15210603.
Article
11. Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006; 8. 355(9):928–939. PMID: 16943405.
Article
12. Brown RD Jr, Wiebers DO, Forbes GS. Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. J Neurosurg. 1990; 12. 73(6):859–863. PMID: 2230969.
Article
13. Bruno G, Todor R, Lewis I, Chyatte D. Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg. 1998; 9. 89(3):431–440. PMID: 9724118.
Article
14. Camarata PJ, Latchaw RE, Rufenacht DA, Heros RC. Intracranial aneurysms. Invest Radiol. 1993; 4. 28(4):373–382. PMID: 8478178.
Article
15. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging. 2005; 4. 24(4):457–467. PMID: 15822804.
Article
16. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012; 9. 32(9):1659–1676. PMID: 22781330.
Article
17. Chiu JJ, Chen CN, Lee PL, Yang CT, Chuang HS, Chien S, et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech. 2003; 12. 36(12):1883–1895. PMID: 14614942.
Article
18. Cohen JR, Mandell C, Chang JB, Wise L. Elastin metabolism of the infrarenal aorta. J Vasc Surg. 1988; 2. 7(2):210–214. PMID: 3123716.
Article
19. Dalman RL. Oxidative stress and abdominal aneurysms: how aortic hemodynamic conditions may influence AAA disease. Cardiovasc Surg. 2003; 10. 11(5):417–419. PMID: 12958555.
Article
20. Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep. 2002; 5. 4(3):222–227. PMID: 11931720.
Article
21. Davies PF, Mundel T, Barbee KA. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995; 12. 28(12):1553–1560. PMID: 8666594.
Article
22. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res. 1998; 6. 82(10):1094–1101. PMID: 9622162.
23. Dolan JM, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng. 2013; 7. 41(7):1411–1427. PMID: 23229281.
Article
24. Dolan JM, Meng H, Singh S, Paluch R, Kolega J. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng. 2011; 6. 39(6):1620–1631. PMID: 21312062.
Article
25. Dua MM, Dalman RL. Hemodynamic influences on abdominal aortic aneurysm disease: Application of biomechanics to aneurysm pathophysiology. Vascul Pharmacol. 2010; Jul-Aug. 53(1-2):11–21. PMID: 20347049.
Article
26. Finol EA, Amon CH. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow. Acta Cient Venez. 2003; 54(1):43–49. PMID: 14515766.
27. Foutrakis GN, Yonas H, Sclabassi RJ. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am J Neuroradiol. 1999; 8. 20(7):1309–1317. PMID: 10472991.
28. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004; 10. 35(10):2287–2293. PMID: 15322297.
29. Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 2012; 6. 123(6):773–786. PMID: 22249619.
Article
30. Gao L, Hoi Y, Swartz DD, Kolega J, Siddiqui A, Meng H. Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke. 2008; 7. 39(7):2085–2090. PMID: 18451348.
Article
31. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994; 5. 330(20):1431–1438. PMID: 8159199.
Article
32. Gordon IL, Kohl CA, Arefi M, Complin RA, Vulpe M. Spinal cord injury increases the risk of abdominal aortic aneurysm. Am Surg. 1996; 3. 62(3):249–252. PMID: 8607588.
33. Gosgnach W, Messika-Zeitoun D, Gonzalez W, Philipe M, Michel JB. Shear stress induces iNOS expression in cultured smooth muscle cells: role of oxidative stress. Am J Physiol Cell Physiol. 2000; 12. 279(6):C1880–C1888. PMID: 11078703.
Article
34. Halloran BG, Baxter BT. Pathogenesis of aneurysms. Semin Vasc Surg. 1995; 6. 8(2):85–92. PMID: 7670668.
35. Hannawa KK, Eliason JL, Upchurch GR Jr. Gender differences in abdominal aortic aneurysms. Vascular. 2009; May-Jun. 17(Suppl 1):S30–S39. PMID: 19426607.
Article
36. Harter LP, Gross BH, Callen PW, Barth RA. Ultrasonic evaluation of abdominal aortic thrombus. J Ultrasound Med. 1982; 10. 1(8):315–318. PMID: 7166768.
Article
37. Hashimoto N, Handa H, Nagata I, Hazama F. Experimentally induced cerebral aneurysms in rats: Part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol. 1980; 1. 13(1):41–45. PMID: 7361257.
38. Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res. 2006; 6. 28(4):372–380. PMID: 16759441.
Article
39. Hazama F, Kataoka H, Yamada E, Kayembe K, Hashimoto N, Kojima M, et al. Early changes of experimentally induced cerebral aneurysms in rats. Light-microscopic study. Am J Pathol. 1986; 9. 124(3):399–404. PMID: 3766700.
40. Hoi Y, Gao L, Tremmel M, Paluch RA, Siddiqui AH, Meng H, et al. In vivo assessment of rapid cerebrovascular morphological adaptation following acute blood flow increase. J Neurosurg. 2008; 12. 109(6):1141–1147. PMID: 19035734.
Article
41. Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg. 2004; 10. 101(4):676–681. PMID: 15481725.
Article
42. Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997; 3. 28(3):660–664. PMID: 9056628.
43. Hsiai TK. Mechanosignal transduction coupling between endothelial and smooth muscle cells: role of hemodynamic forces. Am J Physiol Cell Physiol. 2008; 3. 294(3):C659–C661. PMID: 18344280.
Article
44. Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng. 2008; 10:221–246. PMID: 18647115.
Article
45. Jackson BM, Carpenter JP. Devices used for endovascular aneurysm repair: past, present, and future. Semin Intervent Radiol. 2009; 3. 26(1):39–43. PMID: 21326530.
Article
46. Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M, et al. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg. 2007; 8. 107(2):405–411. PMID: 17695397.
Article
47. Kamiya A, Bukhari R, Togawa T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol. 1984; 46(1):127–137. PMID: 6713148.
Article
48. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol. 1980; 7. 239(1):H14–H21. PMID: 7396013.
Article
49. Kassell NF, Torner JC, Haley EC Jr, Jane JA, Adams HP, Kongable GL. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results. J Neurosurg. 1990; 7. 73(1):18–36. PMID: 2191090.
50. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999; 7. 30(7):1396–1401. PMID: 10390313.
51. Katz DJ, Stanley JC, Zelenock GB. Gender differences in abdominal aortic aneurysm prevalence, treatment, and outcome. J Vasc Surg. 1997; 3. 25(3):561–568. PMID: 9081139.
Article
52. Kayembe KN, Sasahara M, Hazama F. Cerebral aneurysms and variations in the circle of Willis. Stroke. 1984; Sep-Oct. 15(5):846–850. PMID: 6474536.
Article
53. Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, et al. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res. 2011; 48(5):429–442. PMID: 21625176.
Article
54. Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H. Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke. 1998; 1. 29(1):181–188. discussion 189. PMID: 9445349.
Article
55. Kongable GL, Lanzino G, Germanson TP, Truskowski LL, Alves WM, Torner JC, et al. Gender-related differences in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1996; 1. 84(1):43–48. PMID: 8613834.
Article
56. Kono K, Masuo O, Nakao N, Meng H. De novo cerebral aneurysm formation associated with proximal stenosis. Neurosurgery. 2013; 12. 73(6):E1080–E1090. PMID: 23839522.
Article
57. Krex D, Schackert HK, Schackert G. Genesis of cerebral aneurysms--an update. Acta Neurochir (Wien). 2001; 143(5):429–448. discussion 448-9. PMID: 11482693.
58. Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, et al. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol. 2011; 9. 7(10):547–559. PMID: 21931350.
Article
59. Ku DN. Blood flow in arteries. Annu Rev Fluid Mech. 1997; 29:399–434.
Article
60. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985; May-Jun. 5(3):293–302. PMID: 3994585.
Article
61. Kulcsár Z, Ugron A, Marosfoi M, Berentei Z, Paál G, Szikora I. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol. 2011; 3. 32(3):587–594. PMID: 21310860.
Article
62. LaMack JA, Himburg HA, Li XM, Friedman MH. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann Biomed Eng. 2005; 4. 33(4):457–464. PMID: 15909651.
Article
63. Lasheras JC. The biomechanics of arterial aneurysms. Annu Rev Fluid Mech. 2007; 1. 39:293–319.
Article
64. Lederle FA, Johnson GR, Wilson SE. Aneurysm Detection and Management Veterans Affairs Cooperative Study. Abdominal aortic aneurysm in women. J Vasc Surg. 2001; 7. 34(1):122–126. PMID: 11436084.
Article
65. Lederle FA, Johnson GR, Wilson SE, Chute EP, Hye RJ, Makaroun MS, et al. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. The aneurysm detection and management study screening program: validation cohort and final results. Arch Intern Med. 2000; 5. 160(10):1425–1430. PMID: 10826454.
66. Lee JH, Oh CW, Lee SH, Han DH. Aplasia of the internal carotid artery. Acta Neurochir (Wien). 2003; 2. 145(2):117–125. discussion 125. PMID: 12601459.
Article
67. Lehoux S, Tronc F, Tedgui A. Mechanisms of blood flow-induced vascular enlargement. Biorheology. 2002; 39(3-4):319–324. PMID: 12122247.
68. Li J, Li W, Su J, Liu W, Altura BT, Altura BM. Peroxynitrite induces apoptosis in rat aortic smooth muscle cells: possible relation to vascular diseases. Exp Biol Med (Maywood). 2004; 3. 229(3):264–269. PMID: 14988519.
Article
69. López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997; 3. 150(3):993–1007. PMID: 9060837.
70. Maier SE, Meier D, Boesiger P, Moser UT, Vieli A. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology. 1989; 5. 171(2):487–492. PMID: 2649924.
Article
71. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 12. 282(21):2035–2042. PMID: 10591386.
Article
72. Mandelbaum M, Kolega J, Dolan JM, Siddiqui AH, Meng H. A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. PLoS One. 2013; 9. 8(9):e74357. PMID: 24023941.
Article
73. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2007; 3. 27(3):461–469. PMID: 17218601.
Article
74. Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD, et al. Progressive aneurysm development following hemodynamic insult. J Neurosurg. 2011; 4. 114(4):1095–1103. PMID: 20950086.
Article
75. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007; 6. 38(6):1924–1931. PMID: 17495215.
Article
76. Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol. 2008; 8. 295(2):H736–H742. PMID: 18552158.
Article
77. Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, et al. haracterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke. 2010; 8. 41(8):1774–1782. PMID: 20595660.
78. Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol. 2002; 4. 22(4):560–565. PMID: 11950691.
79. Moore JE Jr, Ku DN. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J Biomech Eng. 1994; 8. 116(3):337–346. PMID: 7799637.
Article
80. Moore JE Jr, Ku DN, Zarins CK, Glagov S. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J Biomech Eng. 1992; 8. 114(3):391–397. PMID: 1295493.
Article
81. Moore JE Jr, Maier SE, Ku DN, Boesiger P. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J Appl Physiol. 1994; 4. 76(4):1520–1527. PMID: 8045828.
Article
82. Moore JE Jr, Xu C, Glagov S, Zarins CK, Ku DN. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis. 1994; 10. 110(2):225–240. PMID: 7848371.
Article
83. Moriwaki T, Takagi Y, Sadamasa N, Aoki T, Nozaki K, Hashimoto N. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice. Stroke. 2006; 3. 37(3):900–905. PMID: 16439700.
84. Mostbeck GH, Dulce MC, Caputo GR, Proctor E, Higgins CB. Flow pattern analysis in the abdominal aorta with velocity-encoded cine MR imaging. J Magn Reson Imaging. 1993; Jul-Aug. 3(4):617–623. PMID: 8347955.
Article
85. Nakagawa T, Hashi K. The incidence and treatment of asymptomatic, unruptured cerebral aneurysms. J Neurosurg. 1994; 2. 80(2):217–223. PMID: 8283259.
Article
86. Nerem RM, Harrison DG, Taylor WR, Alexander RW. Hemodynamics and vascular endothelial biology. J Cardiovasc Pharmacol. 1993; 21(Suppl 1):S6–S10. PMID: 7681132.
Article
87. Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg. 2010; 6. 112(6):1240–1253. PMID: 19943737.
Article
88. Nordon IM, Hinchliffe RJ, Holt PJ, Loftus IM, Thompson MM. Review of current theories for abdominal aortic aneurysm pathogenesis. Vascular. 2009; Sep-Oct. 17(5):253–263. PMID: 19769804.
Article
89. Norman PE, Powell JT. Site specificity of aneurysmal disease. Circulation. 2010; 2. 121(4):560–568. PMID: 20124136.
Article
90. Ostergaard JR. Risk factors in intracranial saccular aneurysms. Aspects on the formation and rupture of aneurysms, and development of cerebral vasospasm. Acta Neurol Scand. 1989; 8. 80(2):81–98. PMID: 2683556.
91. Pasco A, Papon X, Bracard S, Tanguy JY, Ter Minassian A, Mercier P. Persistent carotid-vertebrobasilar anastomoses: how and why differentiating them? J Neuroradiol. 2004; 12. 31(5):391–396. PMID: 15687958.
92. Patel DJ, Vaishnav RN, Gow BS, Kot PA. Hemodynamics. Annu Rev Physiol. 1974; 36:125–154. PMID: 19400658.
Article
93. Pedersen EM, Sung HW, Burlson AC, Yoganathan AP. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. J Biomech. 1993; 10. 26(10):1237–1247. PMID: 8253828.
Article
94. Penn DL, Komotar RJ, Sander Connolly E. Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J Clin Neurosci. 2011; 11. 18(11):1435–1438. PMID: 21917457.
Article
95. Phillips LH 2nd, Whisnant JP, O'Fallon WM, Sundt TM Jr. The unchanging pattern of subarachnoid hemorrhage in a community. Neurology. 1980; 10. 30(10):1034–1040. PMID: 7191493.
Article
96. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996; 12. 98(11):2572–2579. PMID: 8958220.
Article
97. Rhoton AL Jr. Aneurysms. Neurosurgery. 2002; 10. 51(4 Suppl):S121–S158. PMID: 12234448.
Article
98. Sacco RL, Wolf PA, Bharucha NE, Meeks SL, Kannel WB, Charette LJ, et al. Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study. Neurology. 1984; 7. 34(7):847–854. PMID: 6539860.
Article
99. Sakamoto N, Saito N, Han X, Ohashi T, Sato M. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem Biophys Res Commun. 2010; 4. 395(2):264–269. PMID: 20371223.
Article
100. Salsac AV, Sparks SR, Lasheras JC. Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann Vasc Surg. 2004; 1. 18(1):14–21. PMID: 14712379.
Article
101. Sandgren T, Sonesson B, Ryden-Ahlgren , Länne T. Arterial dimensions in the lower extremities of patients with abdominal aortic aneurysms-no indications of a generalized dilating diathesis. J Vasc Surg. 2001; 12. 34(6):1079–1084. PMID: 11743564.
Article
102. Schirmer CM, Malek AM. Prediction of complex flow patterns in intracranial atherosclerotic disease using computational fluid dynamics. Neurosurgery. 2007; 10. 61(4):842–851. discussion 852. PMID: 17986947.
Article
103. Setton A, Davis AJ, Bose A, Nelson PK, Berenstein A. Angiography of cerebral aneurysms. Neuroimaging Clin N Am. 1996; 8. 6(3):705–738. PMID: 8873100.
104. Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral anneurysms. Annu Rev Fluid Mech. 2009; 1. 41:91–107. PMID: 19784385.
105. Shah PK. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997; 10. 96(7):2115–2117. PMID: 9337176.
106. Sho E, Sho M, Hoshina K, Kimura H, Nakahashi TK, Dalman RL. Hemodynamic forces regulate mural macrophage infiltration in experimental aortic aneurysms. Exp Mol Pathol. 2004; 4. 76(2):108–116. PMID: 15010288.
Article
107. Silence J, Lupu F, Collen D, Lijnen HR. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol. 2001; 9. 21(9):1440–1445. PMID: 11557669.
Article
108. Stehbens WE. Etiology of intracranial berry aneurysms. J Neurosurg. 1989; 6. 70(6):823–831. PMID: 2654334.
Article
109. Stehbens WE. Histopathology of cerebral aneurysms. Arch Neurol. 1963; 3. 8:272–285. PMID: 13983641.
Article
110. Steiger HJ. Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl (Wien). 1990; 48:1–57. PMID: 2389684.
111. Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol. 2003; 4. 24(4):559–566. PMID: 12695182.
112. Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf). 011; 7. 202(3):213–223. PMID: 21535415.
Article
113. Tang PC, Qin L, Zielonka J, Zhou J, Matte-Martone C, Bergaya S, et al. MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries. J Exp Med. 2008; 12. 205(13):3159–3171. PMID: 19064699.
Article
114. Tanweer O, Metaxa E, Liaw N, Sternberg DS, Siddiqui A, Kolega J, et al. Inhibition of stretch-activated ion channels on endothelial cells disrupt nitric oxide-mediated arterial outward remodeling. J Biorheol. 2010; 24(2):77–83.
115. Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng. 2002; 3. 30(3):402–408. PMID: 12051624.
Article
116. Taylor CA, Hughes TJ, Zarins CK. Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg. 1999; 6. 29(6):1077–1089. PMID: 10359942.
Article
117. Tulamo R, Frösen J, Hernesniemi J, Niemelä M. Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg. 2010; 6. 2(2):120–130. PMID: 21990591.
Article
118. van den Bosch MA, van der Graaf Y, Eikelboom BC, Algra A, Mali WP. SMART Study Group. Second Manifestations of ARTerial Disease. Distal aortic diameter and peripheral arterial occlusive disease. J Vasc Surg. 2001; 12. 34(6):1085–1089. PMID: 11743565.
119. Vessières E, Freidja ML, Loufrani L, Fassot C, Henrion D. Flow (shear stress)-mediated remodeling of resistance arteries in diabetes. Vascul Pharmacol. 2012; Nov-Dec. 57(5-6):173–178. PMID: 22484164.
Article
120. Vollmar JF, Paes E, Pauschinger P, Henze E, Friesch A. Aortic aneurysms as late sequelae of above-knee amputation. Lancet. 1989; 10. 2(8667):834–835. PMID: 2571760.
Article
121. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol. 1995; 1. 15(1):2–10. PMID: 7538423.
Article
122. Wang Z, Kolega J, Hoi Y, Gao L, Swartz DD, Levy EI, et al. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery. 2009; 7. 65(1):169–177. discussion 177-8. PMID: 19574839.
Article
123. Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain. 2000; 2. 123(Pt 2):205–221. PMID: 10648430.
Article
124. Weir B. Unruptured intracranial aneurysms: a review. J Neurosurg. 2002; 1. 96(1):3–42. PMID: 11794601.
Article
125. Wong GK, Poon WS. Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective. J Clin Neurosci. 2011; 10. 18(10):1285–1288. PMID: 21795051.
Article
126. Yamazoe N, Hashimoto N, Kikuchi H, Hazama F. Elastic skeleton of intracranial cerebral aneurysms in rats. Stroke. 1990; 12. 21(12):1722–1726. PMID: 2264079.
Article
127. Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, et al. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J Vasc Surg. 2006; 12. 44(6):1254–1265. PMID: 17145427.
Article
128. Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol. 2004; 9. 3(1):17–32. PMID: 15300454.
Article
129. Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, et al. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010; 4. 21(2):221–233. PMID: 20380965.
Article
130. Zarins CK, Xu C, Glagov S. Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis. 2001; 3. 155(1):157–164. PMID: 11223437.
Article
Full Text Links
  • JCEN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr