J Cardiovasc Ultrasound.  2009 Dec;17(4):121-126. 10.4250/jcu.2009.17.4.121.

Relationship between the Echocardiographic Epicardial Adipose Tissue Thickness and Serum Adiponectin in Patients with Angina

Affiliations
  • 1Department of Cardiovascular Medicine, Wonkwang University Hospital, Iksan, Korea. jjwcar@wonkwang.ac.kr
  • 2Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Korea.

Abstract

BACKGROUND
It is still unknown whether increased cardiac adiposity is related to the risk factors of coronary artery disease (CAD). We measured epicaridal adopose tissue (EAT) and mediastinal adipose tissue (MAT) using echocardiography and examined their correlations with CAD and serum adiponectin. METHODS: One hundred fifty three patients who underwent elective coronary angiography for chest pain were measured cardiac adiposity by transthoracic echocardiography. The correlations of cardiac adipose tissue with the presence and severity of CAD and the serum adiponectin level were examined. RESULTS: EAT was thicker in patients with CAD (1.8+/-1.4 vs. 3.8+/-1.9 mm, p<0.001), but MAT was not different according to the presence of CAD (2.9+/-2.8 vs. 3.5+/-2.5 mm, p=0.121). EAT showed a significant positive correlation with age (r=0.225, p=0.005), homocystein (r=0.289, p=0.001), fasting glucose (r=0.167, p=0.042), and fibrinogen (r=0.218, p=0.009), and a significant negative correlation with serum adiponectin (r=-0.194, p=0.016). EAT thickness (OR 11.53, 95% CI; 3.61-36.84, p<0.001) and low serum adiponectin (OR 2.88, 95% CI; 1.02-8.15, p=0.046) were independent predictors of obstructive CAD. However, MAT thickness was not associated with CAD. CONCLUSION: EAT was associated with the severity and risk factors of CAD and correlated with serum adiponectin level. In contrast with EAT, MAT was not associated with CAD and adiponectin.

Keyword

Epicardium; Adiponectin; Coronary artery disease; Echocardiography

MeSH Terms

Adiponectin
Adipose Tissue
Adiposity
Chest Pain
Coronary Angiography
Coronary Artery Disease
Echocardiography
Fasting
Fibrinogen
Glucose
Humans
Pericardium
Risk Factors
Adiponectin
Fibrinogen
Glucose

Figure

  • Fig. 1. Echocardiographic measurement of epicardial adipose tissue and mediastinal adipose tissue. EAT: epicardial adipose tissue, MAT: mediastinal adipose tissue.

  • Fig. 2. Correlation between serum adiponectin level and epicaridal adipose tissue according to gender. EAT: epicardial adipose tissue.

  • Fig. 3. Cardiac adipose tissue and serum adiponectin level according to the severity of coronary artery disease. *p<0.05.


Reference

1. Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF, Prokop M, Visseren FL. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol. 2008; 102:380–385.
Article
2. Ahn SG, Lim HS, Joe DY, Kang SJ, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH. Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart. 2008; 94:e7.
Article
3. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis. 2009; 19:211–217.
Article
4. Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, Clark K, Nassef LA, Shirani J. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008; 102:767–771.
Article
5. Jeong JW, Jeong MH, Yun KH, Oh SK, Park EM, Kim YK, Rhee SJ, Lee EM, Lee J, Yoo NJ, Kim NH, Park JC. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007; 71:536–539.
Article
6. Djaberi R, Schuijf JD, van Werkhoven JM, Nucifora G, Jukema JW, Bax JJ. Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol. 2008; 102:1602–1607.
Article
7. Hwang JW, Choi UJ, Ahn SG, Lim HS, Kang SJ, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH, Kang DK. Echocardiographic plains reflecting total amount of epicardial adipose tissue as risk factor of coronary artery disease. J Cardiovasc Ultrasound. 2008; 16:17–22.
Article
8. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O\'Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003; 108:2460–2466.
Article
9. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, Gallo P, di Gioia CR. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005; 29:251–255.
Article
10. Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, Vitale D, Tritapepe L, Letizia C. Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res. 2009; 41:227–231.
Article
11. Sironi AM, Gastaldelli A, Mari A, Ciociaro D, Positano V, Buzzigoli E, Ghione S, Turchi S, Lombardi M, Ferrannini E. Visceral fat in hypertension: influence on insulin resistance and beta-cell function. Hypertension. 2004; 44:127–133.
12. Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001; 157:203–209.
Article
13. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003; 11:304–310.
Article
14. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003; 88:5163–5168.
Article
15. Park EM, Choi JH, Shin IS, Yun KH, Yoo NJ, Oh SK, Kim NH, Jeong JW. Echocaridographic epicardial fat thickness on short term prognosis in patients with acute coronary sydrome. J Cardiovasc Ultrasound. 2008; 16:42–47.
16. Malavazos AE, Ermetici F, Cereda E, Coman C, Locati M, Morricone L, Corsi MM, Ambrosi B. Epicardial fat thickness: relationship with plasma visfatin and plasminogen activator inhibitor-1 levels in visceral obesity. Nutr Metab Cardiovasc Dis. 2008; 18:523–530.
Article
17. Malavazos AE, Ermetici F, Coman C, Corsi MM, Morricone L, Ambrosi B. Influence of epicardial adipose tissue and adipocytokine levels on cardiac abnormalities in visceral obesity. Int J Cardiol. 2007; 121:132–134.
Article
18. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007; 153:907–917.
Article
19. Iacobellis G, Willens HJ, Barbaro G, Sharma AM. Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring). 2008; 16:887–892.
Article
Full Text Links
  • JCU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr