Electrolyte Blood Press.  2009 Jun;7(1):1-4. 10.5049/EBP.2009.7.1.1.

Ubiquitination of Aquaporin: in the kidney

Affiliations
  • 1Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea. thkwon@knu.ac.kr

Abstract

Ubiquitination is known to be important for endocytosis and lysosomal degradation of aquaporin-2 (AQP2). Ubiquitin (Ub) is covalently attached to the lysine residue of the substrate proteins and activation and attachment of Ub to a target protein is mediated by the action of three enzymes (i.e., E1, E2, and E3). In particular, E3 Ub-protein ligases are known to have substrate specificity. This minireview will discuss the ubiquitination of AQP2 and identification of potential E3 Ub-protein ligases for 1-deamino-8-D-arginine vasopressin (dDAVP)-dependent AQP2 regulation.

Keyword

kidney tubules, collecting; ubiquitination; vasopressins; aquaporin 2

MeSH Terms

Aquaporin 2
Deamino Arginine Vasopressin
Endocytosis
Kidney
Kidney Tubules, Collecting
Ligases
Lysine
Proteins
Substrate Specificity
Ubiquitin
Ubiquitination
Vasopressins
Aquaporin 2
Deamino Arginine Vasopressin
Ligases
Lysine
Proteins
Ubiquitin
Vasopressins

Figure

  • Fig. 1 Aquaporin-2 (AQP2) trafficking and endocytosis. Short-term regulated trafficking of AQP2-expressing vesicles to the apical plasma membrane occurs in response to vasopressin stimulation. In contrast, ubiquitination is important for endocytosis and lysosomal degradation of AQP2 mainly in the multivescicular bodies (MVB). Ub, ubiquitin; P, phosphorylation; E3, Ub-protein ligase.

  • Fig. 2 Ubiquitin (Ub)-conjugation pathway. Activation and attachment of Ub to a target protein is mediated by the action of three enzymes (i.e., E1, E2, and E3). The E1 (Ub-activating enzyme) activates the C-terminus of Ub in an ATP-dependent manner, and both E2 (Ub-conjugating enzyme) and E3 (Ub-protein ligase) are involved in the attachment of Ub to a target protein (S) specifically through the ε-amino group of a lysine residue. (Modified from the previous study14)) Cys, cysteine; Lys, lysine; ATP, adenosine-5'-triphosphate; AMP, adenosine monophosphate; PPi, pyrophosphate; HECT, homologous to E6-associated protein C-terminus; RING, really interesting new gene.


Reference

1. Knepper M, Burg M. Organization of nephron function. Am J Physiol. 1983; 244:F579–F589. PMID: 6305206.
Article
2. Knepper MA, Nielsen S, Chou CL, DiGiovanni SR. Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol. 1994; 14:302–321. PMID: 7938946.
3. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002; 82:205–244. PMID: 11773613.
4. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA. 1995; 92:1013–1017. PMID: 7532304.
Article
5. Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996; 271:F414–F422. PMID: 8770174.
Article
6. Kwon TH, Nielsen J, Moller HB, Fenton RA, Nielsen S, Frokiaer J. Aquaporins in the kidney. Handb Exp Pharmacol. 2009; 95–132. PMID: 19096774.
Article
7. Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol. 2005; 288:F930–F938. PMID: 15625084.
Article
8. Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A. Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol. 2000; 278:F388–F394. PMID: 10710543.
9. van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, et al. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem. 2002; 277:41473–41479. PMID: 12194985.
Article
10. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA. 2006; 103:18344–18349. PMID: 17101973.
Article
11. Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med. 2000; 6:1073–1081. PMID: 11017125.
12. Hershko A. Ubiquitin: roles in protein modification and breakdown. Cell. 1983; 34:11–12. PMID: 6309404.
Article
13. Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983; 258:8206–8214. PMID: 6305978.
Article
14. Hochstrasser M. Lingering mysteries of ubiquitin-chain assembly. Cell. 2006; 124:27–34. PMID: 16413479.
Article
15. Wilkinson KD. The discovery of ubiquitin-dependent proteolysis. Proc Natl Acad Sci USA. 2005; 102:15280–15282. PMID: 16230621.
Article
16. Wilkinson KD, Ventii KH, Friedrich KL, Mullally JE. The ubiquitin signal: assembly, recognition and termination. Symposium on ubiquitin and signaling. EMBO Rep. 2005; 6:815–820. PMID: 16113643.
17. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996; 15:2371–2380. PMID: 8665844.
Article
18. Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, et al. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest. 1999; 103:667–673. PMID: 10074483.
19. Malik B, Price SR, Mitch WE, Yue Q, Eaton DC. Regulation of epithelial sodium channels by the ubiquitin-proteasome proteolytic pathway. Am J Physiol Renal Physiol. 2006; 290:F1285–F1294. PMID: 16682484.
Article
20. Lee YJ, Choi HJ, Lim JS, Earm JH, Lee BH, Kim IS, et al. A novel method of ligand peptidomics to identify peptide ligands binding to AQP2-expressing plasma membranes and intracellular vesicles of rat kidney. Am J Physiol Renal Physiol. 2008; 295:F300–F309. PMID: 18480184.
Article
21. van Balkom BW, Boone M, Hendriks G, Kamsteeg EJ, Robben JH, Stronks HC, et al. LIP5 interacts with aquaporin 2 and facilitates its lysosomal degradation. J Am Soc Nephrol. 2009; 20:990–1001. PMID: 19357255.
Article
22. Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics. 2008; 32:229–253. PMID: 17956998.
Article
23. Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. Tandem mass spectrometry in physiology. Physiology (Bethesda). 2007; 22:390–400. PMID: 18073412.
Article
24. Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, et al. Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct. Am J Physiol Cell Physiol. 2008; 295:C661–C678. PMID: 18596208.
Article
Full Text Links
  • EBP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr