1. Ecelbarger CA, Nielsen S, Olson BR, et al. Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Invest. 1997; 99:1852–1863. PMID:
9109429.
Article
2. Ecelbarger CA, Chou CL, Lee AJ, DiGiovanni SR, Verbalis JG, Knepper MA. Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol. 1998; 274:F1161–F1166. PMID:
9841509.
3. Ecelbarger CA, Knepper MA, Verbalis JG. Increased abundance of distal sodium transporters in rat kidney during vasopressin escape. J Am Soc Nephrol. 2001; 12:207–217. PMID:
11158210.
Article
4. Hoorn EJ. Water and salt: from renal mechanisms to clinical disorders [dissertation]. 2007. Rotterdam: Erasmus Universiteit Rotterdam.
5. Murase T, Tian Y, Fang XY, Verbalis JG. Synergistic effects of nitric oxide and prostaglandins on renal escape from vasopressin-induced antidiuresis. Am J Physiol Regul Integr Comp Physiol. 2003; 284:R354–R362. PMID:
12388460.
6. Murase T, Ecelbarger CA, Baker EA, Tian Y, Knepper MA, Verbalis JG. Kidney aquaporin-2 expression during escape from antidiuresis is not related to plasma or tissue osmolality. J Am Soc Nephrol. 1999; 10:2067–2075. PMID:
10505682.
Article
7. Song J, Hu X, Khan O, Tian Y, Verbalis JG, Ecelbarger CA. Increased blood pressure, aldosterone activity, and regional differences in renal ENaC protein during vasopressin escape. Am J Physiol Renal Physiol. 2004; 287:F1076–F1083. PMID:
15226153.
Article
8. Verbalis JG. Escape from antidiuresis: a good story. Kidney Int. 2001; 60:1608–1610. PMID:
11576381.
Article
9. Tian Y, Sandberg K, Murase T, Baker EA, Speth RC, Verbalis JG. Vasopressin V2 receptor binding is down-regulated during renal escape from vasopressin-induced antidiuresis. Endocrinology. 2000; 141:307–314. PMID:
10614652.
10. Gowrishankar M, Lenga I, Cheung RY, Cheema-Dhadli S, Halperin ML. Minimum urine flow rate during water deprivation: importance of the permeability of urea in the inner medulla. Kidney Int. 1998; 53:159–166. PMID:
9453013.
Article
11. Cheema-Dhadli S, Halperin ML. Relative rates of appearance of nitrogen and sulphur: implications for postprandial synthesis of proteins. Can J Physiol Pharmacol. 1993; 71:120–127. PMID:
8319135.
Article
12. Halperin ML, Vinay P, Gougoux A, Pichette C, Jungas RL. Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am J Physiol. 1985; 248:F607–F615. PMID:
3985167.
Article
13. Gamble J, McKhann C, Butler A, Tuthill E. An economy of water in renal function referable to urea. Am J Physiol. 1934; 109:139–154.
Article
14. Steele A, deVeber H, Quaggin SE, Scheich A, Ethier J, Halperin ML. What is responsible for the diurnal variation in potassium excretion? Am J Physiol. 1994; 267:R554–R560. PMID:
8067468.
Article
15. Schmidt-Nielsen B, Churchill M, Reinking LN. Occurrence of renal pelvic refluxes during rising urine flow rate in rats and hamsters. Kidney Int. 1980; 18:419–431. PMID:
7230608.
Article
16. Robinson AG, Roberts MM, Evron WA, Verbalis JG, Sherman TG. Hyponatremia in rats induces downregulation of vasopressin synthesis. J Clin Invest. 1990; 86:1023–1029. PMID:
2211999.
Article
17. Hoorn EJ, Hoffert JD, Knepper MA. Combined proteomics and pathways analysis of collecting duct reveals a protein regulatory network activated in vasopressin escape. J Am Soc Nephrol. 2005; 16:2852–2863. PMID:
16079266.
Article