1. Joo EY, Hong SB, Han HJ, Tae WS, Kim JH, Han SJ, et al. Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. Brain. 2005. 128:1802–1810.
Article
2. Lee HW, Hong SB, Tae WS. Opposite ictal perfusion patterns of subtracted SPECT. Hyperperfusion and hypoperfusion. Brain. 2000. 123:2150–2159.
Article
3. Luders HO, Engle J, Munari C. Engel J, editor. General principles. Surgical Treatment of the Epilepsies. 1993. New York: Raven Press;137–153.
4. Tae WS, Joo EY, Kim JH, Han SJ, Suh YL, Kim BT, et al. Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT. Neuroimage. 2005. 24:101–110.
Article
5. Manganotti P, Bongiovanni LG, Zanette G, Turazzini M, Fiaschi A. Cortical excitability in patients after loading doses of lamotrigine: a study with magnetic brain stimulation. Epilepsia. 1999. 40:316–321.
Article
6. Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol. 1996. 496:873–881.
Article
7. Hallett M, Chokroverty S. Magnetic Stimulation in Clinical Neurophysiology. 2005. Philadelphia: Elsevier.
8. Delvaux V, Alagona G, Gérard P, De Pasqua V, Delwaide PJ, Maertens de Noordhout A. Reduced excitability of the motor cortex in untreated patients with de novo idiopathic "grand mal" seizures. J Neurol Neurosurg Psychiatry. 2001. 71:772–776.
Article
9. Reutens DC, Berkovic SF, Macdonell RA, Bladin PF. Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol. 1993. 34:351–355.
Article
10. Werhahn KJ, Lieber J, Classen J, Noachtar S. Motor cortex excitability in patients with focal epilepsy. Epilepsy Res. 2000. 41:179–189.
Article
11. Badawy RA, Curatolo JM, Newton M, Berkovic SF, Macdonell RA. Changes in cortical excitability differentiate generalized and focal epilepsy. Ann Neurol. 2007. 61:324–331.
Article
12. Brodie MJ, Duncan R, Vespignani H, Solyom A, Bitenskyy V, Lucas C. Dose-dependent safety and efficacy of zonisamide: a randomized, double-blind, placebo-controlled study in patients with refractory partial seizures. Epilepsia. 2005. 46:31–41.
Article
13. Faught E, Ayala R, Montouris GG, Leppik IE. Zonisamide 922 Trial Group. Randomized controlled trial of zonisamide for the treatment of refractory partial-onset seizures. Neurology. 2001. 57:1774–1779.
Article
14. Park SP, Kim SY, Hwang YH, Lee HW, Suh CK, Kwon SH. Long-term efficacy and safety of zonisamide monotherapy in epilepsy patients. J Clin Neurol. 2007. 3:175–180.
Article
15. Sackellares JC, Ramsay RE, Wilder BJ, Browne TR 3rd, Shellenberger MK. Randomized, controlled clinical trial of zonisamide as adjunctive treatment for refractory partial seizures. Epilepsia. 2004. 45:610–617.
Article
16. Sobieszek G, Borowicz KK, Kimber-Trojnar Z, Małtek R, Piskorska B, Czuczwar SJ. Zonisamide: a new antiepileptic drug. Pol J Pharmacol. 2003. 55:683–689.
17. Leppik IE. Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure. 2004. 13:Suppl 1. S5–S9. discussion S10.
Article
18. Joo EY, Kim SH, Seo DW, Hong SB. Zonisamide decreases cortical excitability in patients with idiopathic generalized epilepsy. Clin Neurophysiol. 2008. 119:1385–1392.
Article
19. Eisai Pharmaceuticals Inc. Zonegran Zonisamide Capsules Prescribing Information. 2004. Teaneck, NJ: Eisai Pharmaceuticals Inc..
20. Tergau F, Wanschura V, Canelo M, Wischer S, Wassermann EM, Ziemann U, et al. Complete suppression of voluntary motor drive during the silent period after transcranial magnetic stimulation. Exp Brain Res. 1999. 124:447–454.
Article
21. Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology. 1998. 51:1320–1324.
Article
22. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993. 471:501–519.
Article
23. Reis J, Tergau F, Hamer HM, Müller HH, Knake S, Fritsch B, et al. Topiramate selectively decreases intracortical excitability in human motor cortex. Epilepsia. 2002. 43:1149–1156.
Article
24. Ito T, Yamaguchi T, Miyazaki H, Sekine Y, Shimizu M, Ishida S, et al. Pharmacokinetic studies of AD-810, a new antiepileptic compound. Phase I trials. Arzneimittelforschung. 1982. 32:1581–1586.
25. Taylor CP, McLean JR, Bockbrader HN, Budannan RA, Xarasaua T, Meyazaki M, et al. Meldrum BS, Porter RJ, editors. Zonisamide (AD-810, CI-912). New Anticonvulsant Drugs. 1986. London: John Libbey;277–294.
26. Sohn YH, Kaelin-Lang A, Jung HY, Hallett M. Effect of levetiracetam on human corticospinal excitability. Neurology. 2001. 57:858–863.
Article
27. Takano K, Tanaka T, Fujita T, Nakai H, Yonemasu Y. Zonisamide: electrophysiological and metabolic changes in kainic acid-induced limbic seizures in rats. Epilepsia. 1995. 36:644–648.
Article
28. Akaike K, Tanaka S, Tojo H, Fukumoto S, Imamura S, Takigawa M. Regional accumulation of 14C-zonisamide in rat brain during kainic acid-induced limbic seizures. Can J Neurol Sci. 2001. 28:341–345.
Article
29. Futatsugi Y, Riviello JJ Jr. Mechanisms of generalized absence epilepsy. Brain Dev. 1998. 20:75–79.
Article
30. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron. 2001. 31:35–45.
Article
31. Kito M, Maehara M, Watanabe K. Mechanisms of T-type calcium channel blockade by zonisamide. Seizure. 1996. 5:115–119.
Article
32. Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 1992. 12:21–27.
Article
33. Marinas A, Villanueva V, Giráldez BG, Molins A, Salas-Puig J, Serratosa JM. Efficacy and tolerability of zonisamide in idiopathic generalized epilepsy. Epileptic Disord. 2009. 11:61–66.
34. Szaflarski JP. Effects of zonisamide on the electroencephalogram of a patient with juvenile myoclonic epilepsy. Epilepsy Behav. 2004. 5:1024–1026.
Article
35. Reutens DC, Berkovic SF. Increased cortical excitability in generalised epilepsy demonstrated with transcranial magnetic stimulation. Lancet. 1992. 339:362–363.
Article
36. Macdonell RA, King MA, Newton MR, Curatolo JM, Reutens DC, Berkovic SF. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology. 2001. 57:706–708.
Article
37. Manganotti P, Zanette G. Contribution of motor cortex in generation of evoked spikes in patients with benign rolandic epilepsy. Clin Neurophysiol. 2000. 111:964–974.
Article
38. Gianelli M, Cantello R, Civardi C, Naldi P, Bettucci D, Schiavella MP, et al. Idiopathic generalized epilepsy: magnetic stimulation of motor cortex time-locked and unlocked to 3-Hz spike-and-wave discharges. Epilepsia. 1994. 35:53–60.
Article
39. Chen R, Samii A, Caños M, Wassermann EM, Hallett M. Effects of phenytoin on cortical excitability in humans. Neurology. 1997. 49:881–883.
Article
40. Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996. 40:367–378.
Article
41. Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res. 1996. 109:127–135.
Article
42. Inghilleri M, Conte A, Frasca V, Curra' A, Gilio F, Manfredi M, et al. Antiepileptic drugs and cortical excitability: a study with repetitive transcranial stimulation. Exp Brain Res. 2004. 154:488–493.
Article
43. Lee HW, Seo HJ, Cohen LG, Bagic A, Theodore WH. Cortical excitability during prolonged antiepileptic drug treatment and drug withdrawal. Clin Neurophysiol. 2005. 116:1105–1112.
Article