Abreu J.G.., Ketpura N.I.., Reversade B.., De Robertis E.M.2002. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat. Cell. Biol. 4(8):599–604.
Article
Abu-Abed S.., Dolle P.., Metzger D.., Beckett B.., Chambon P.., Petkovich M.2001. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 15(2):226–240.
Article
Ariizumi T.., Takahashi S.., Chan T.C.., Ito Y.., Michiue T.., Asashima M.2009. Isolation and differentiation of Xenopus animal cap cells. Curr. Protoc. Stem Cell Biol. (Gregory, R., Elefanty, A., Yamashita, Y., Patient, R., Schlaeger, T. and Snyder, E. eds), 9: 1D.5.1-1D.5.31. John Wiley and Sons., New York.
Cha S.W.., Hwang Y.S.., Chae J.P.., Lee S.Y.., Lee H.S.., Daar I.., Park M.J.., Kim J.2004. Inhibition of FGF signaling causes expansion of the endoderm in Xenopus. Biochem. Biophys. Res. Commun. 315(1):100–106.
Article
Cornish E.J.., Hassan S.M.., Martin J.D.., Li S.., Merzdorf C.S.2009. A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds. Dev. Dyn. 238(5):1179–1194.
Curran T.., Gordon M.B.., Rubino K.L.., Sambucetti L.C.1987. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 2(1):79–84.
Feledy J.A.., Beanan M.J.., Sandoval J.J.., Goodrich J.S.., Lim J.H.., Matsuo-Takasaki M.., Sato S.M.., Sargent T.D.1999. Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev. Biol. 212(2):455–464.
Article
Garcia Abreu J.., Coffinier C.., Larrain J.., Oelgeschlager M.., De Robertis E.M.2002. ).Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene. 287(1-2):39–47.
Article
Harland R.M.1991. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell. Biol. 36:685–695.
Hawley S.H.., Wunnenberg-Stapleton K.., Hashimoto C.., Laurent M.N.., Watabe T.., Blumberg B.W.., Cho K.W.1995. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9(23):2923–2935.
Article
Hemmati-Brivanlou A.., Kelly O.G.., Melton D.A.1994. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 77(2):283–295.
Article
Hemmati-Brivanlou A.., Melton D.1997. Vertebrate neural induction. Annu. Rev. Neurosci. 20:43–60.
Article
Hollemann T.., Chen Y.., Grunz H.., Pieler T.1998. Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J. 17(24):7361–7372.
Article
Karsten S.L.., Kudo L. C.., Geschwind D. H.2008. Gene expression analysis of neural cells and tissues using DNA microarrays. Curr. Protoc. Neurosci. (Crawley, J.N., Gerfen, C., Rogawski, M., Sibley, D., Skolnick, P. and Wray, S. eds), 45: 4.28.1-4.28.38, John Wiley and Sons., New York.
Kudoh T.., Wilson S.W.., Dawid I.B.2002. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development. 129(18):4335–4346.
Article
Lamb T.M.., Knecht A.K.., Smith W.C.., Stachel S.E.., Economides A.N.., Stahl N.., Yancopolous G. D.., Harland R.M.1993. Neural induction by the secreted polypeptide noggin. Science. 262(5134):713–718.
Article
Munoz-Sanjuan I.., Brivanlou A.H.2002a. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3(4):271–280.
Munoz-Sanjuan I.., Bell E.., Altmann C.R.., Vonica A.., Brivanlou A.H.2002b. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development. 129(23):5529–5540.
Nakata K.., Nagai T.., Aruga J.., Mikoshiba K.1998. ).Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75(1-2):43–51.
Nieuwkoop P.D.., Faber J.1975. Normal Table of Xenopus Laevis (Daudin). North-Holland, Amsterdam.
Ohuchi H.., Tomonari S.., Itoh H.., Mikawa T.., Noji S.1999. ).Identification of chick rax/rx genes with overlapping patterns of expression during early eye and brain development. Mech. Dev. 85(1-2):193–195.
Piccolo S.., Sasai Y.., Lu B.., De Robertis E.M.1996. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 86(4):589–598.
Article
Rauscher F.J.., 3rd, Voulalas P.J.., Franza B.R. Jr.., Curran T.1988. ).Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes. Dev. 2(12B):1687–1699.
Article
Sakai Y.., Meno C.., Fujii H.., Nishino J.., Shiratori H.., Saijoh Y.., Rossant J.., Hamada H.2001. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15(2):213–225.
Article
Sasai Y.., Lu B.., Steinbeisser H.., Geissert D.., Gont L.K.., De Robertis E.M.1994. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 79(5):779–790.
Article
Sasai Y.., Lu B.., Steinbeisser H.., De Robertis E.M.1995. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature. 376(6538):333–336.
Article
Shin Y.., Kitayama A.., Koide T.., Peiffer D.A.., Mochii M.., Liao A.., Ueno N.., Cho K.W.2005. Identification of neural genes using Xenopus DNA microarrays. Dev. Dyn. 232(2):432–444.
Sive H.L.., Grainger R.M.., Harland R.M.2000. Early Development of Xenopus Laevis: A Laboratory Manual. Cold Spring Harbor press, Cold Spring Harbor.
White J.A.., Guo Y.D.., Baetz K.., Beckett-Jones B.., Bonasoro J.., Hsu K.E.., Dilworth F.J.., Jones G.., Petkovich M.1996. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J. Biol. Chem. 271(47):29922–29927.
Article
Wilson P.A.., Hemmati-Brivanlou A.1995. Induction of epidermis and inhibition of neural fate by BMP-4. Nature. 376(6538):331–333.
Article
Xu R.H.., Kim J.., Taira M.., Zhan S.., Sredni D.., Kung H.F.1995. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 212(1):212–219.
Article
Zaraiskii A.G.2007. Neural induction: new achievements and perspectives. Mol. Biol. (Mosk). 41(2):200–215.
Zhang J.L.., Huang Y.., Qiu L.Y.., Nickel J.., Sebald W.2007. von Willebrand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms. J. Biol. Chem. 282(27):20002–20014.
Article
Zimmerman L.B.., De Jesus-Escobar J.M.., Harland R.M.1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 86(4):599–606.
Article