J Vet Sci.  2008 Jun;9(2):145-153. 10.4142/jvs.2008.9.2.145.

Variable number tandem repeat analysis of Mycobacterium bovis isolates from Gyeonggi-do, Korea

Affiliations
  • 1Department of Microbiology and the Brain Korea 21 Project for the Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea. raycho@yuhs
  • 2Gyeonggi-do Veterinary Service, Suwon 441-460, Korea.
  • 3Department of Biomedical Laboratory Sciences, College of Health Sciences, Yonsei University, Wonju 220-710, Korea.
  • 4The International Vaccine Institute, Seoul 151-600, Korea.

Abstract

Bovine tuberculosis (TB) is a major zoonosis that's caused by Mycobacterium bovis (M. bovis). Being able to detect M. bovis is important to control bovine TB. We applied a molecular technique, the variable number tandem repeat (VNTR) typing method, to identify and distinguish the M. bovis isolates from Gyeonggi-do, Korea. From 2003 to 2004, 59 M. bovis clinical strains were isolated from dairy cattle in Gyeonggi-do, Korea, and these cattle had tuberculosis-like lesions. Twenty-four published MIRUVNTR markers were applied to the M. bovis isolates and ten of them showed allelic diversity. The most discriminatory locus for the M. bovis isolates in Korea was QUB 3336 (h = 0.64). QUB 26 and MIRU 31 also showed high discriminative power (h = 0.35). The allelic diversity by the combination of all VNTR loci was 0.86. Six loci (MIRU 31, ETR-A and QUB-18, -26, -3232, -3336) displayed valuable allelic diversity. Twelve genotypes were identified from the 59 M. bovis isolates that originated from 20 cattle farms that were dispersed throughout the region of Gyenggi-do. Two genotypes [designation index (d.i.) = e, g] showed the highest prevalence (20% of the total farms). For the multiple outbreaks on three farms, two successive outbreaks were caused by the same genotype at two farms. Interestingly, the third outbreak at one farm was caused by both a new genotype and a previous genotype. In conclusion, this study suggests that MIRU-VNTR typing is useful to identify and distinguish the M. bovis isolates from Gyeonggi-do, Korea.

Keyword

bovine tuberculosis; Korea; Mycobacterium bovis; VNTR typing

MeSH Terms

Animals
Cattle
DNA Primers/genetics
*Genetic Variation
Genotype
Korea/epidemiology
Minisatellite Repeats/*genetics
Mycobacterium bovis/*genetics
Prevalence
Tuberculosis, Bovine/*epidemiology/*microbiology

Figure

  • Fig. 1 The geographical origin of the M. bovis strains isolated from cattle are aligned with the corresponding VNTR genotype. A capital letter indicates the cattle farm. A lower-case letter indicates the genotypes of the M. bovis strains at each cattle farm and the number in parenthesis indicates the number of outbreaks of the genotype of the M. bovis isolates.

  • Fig. 2 PCR products of the various M. bovis isolates with using primers that amplify QUB3336. Lane M: 100 bp DNA ladder, lane 1-12 and lanes 15-26: M. bovis isolates, lanes 13 and 27: M. tuberculosis H37Rv, lanes 14 and 28: negative controls.


Cited by  1 articles

Mycobacterium bovis infection in a wild sow (Sus scrofa): the first case in Korea
Bok Kyung Ku, Bo-Young Jeon, Jae Myung Kim, Young-Boo Jang, Yunho Jang, So Yoon Yu, Jiro Kim, Oun Kyung Moon, Suk Chan Jung, Min Kwon Lee, Tae Nam Jeong
J Vet Sci. 2016;17(3):427-429.    doi: 10.4142/jvs.2016.17.3.427.


Reference

1. Allix C, Walravens K, Saegerman C, Godfroid J, Supply P, Fauville-Dufaux M. Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium tuberculosis and comparison of the method with IS6110 restriction fragment length polymorphism analysis and spoligotyping. J Clin Microbiol. 2006. 44:1951–1962.
Article
2. Alito A, Morcillo N, Scipioni S, Dolmann A, Romano MI, Cataldi A, van Soolingen D. The IS6110 restriction fragment length polymorphism in particular multidrug-resistant Mycobacterium tuberculosis strains may evolve too fast for reliable use in outbreak investigation. J Clin Microbiol. 1999. 37:788–791.
Article
3. Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT. Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol. 2002. 40:1592–1602.
Article
4. Domenech P, Barry CE III, Cole ST. Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol. 2001. 4:28–34.
5. Frothingham R, Meeker-O'Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology. 1998. 144:1189–1196.
Article
6. Heersma HF, Kremer K, van Embden JD. Computer analysis of IS6110 RFLP patterns of Mycobacterium tuberculosis. Methods Mol Biol. 1998. 101:395–422.
7. Hilty M, Diguimbaye C, Schelling E, Baggi F, Tanner M, Zinsstag J. Evaluation of the discriminatory power of variable number tandem repeat (VNTR) typing of Mycobacterium tuberculosis strains. Vet Microbiol. 2005. 109:217–222.
Article
8. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden JDA. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997. 35:907–914.
Article
9. Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PWM, Martín C, Palittapongarnpim P, Plikaytis BB, Riley LW, Yakrus MA, Musser JM, van Embden JD. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol. 1999. 37:2607–2618.
Article
10. Le Flèche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2002. 2:37.
11. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA. 2001. 98:1901–1906.
Article
12. O'Reilly LM, Daborn CJ. The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis. 1995. 76:Suppl 1. 1–46.
13. Perumaalla VS, Adams LG, Payeur J, Baca D, Ficht TA. Molecular fingerprinting confirms extensive cow-to-cow intra-herd transmission of a single Mycobacterium bovis strain. Vet Microbiol. 1999. 70:269–276.
Article
14. Roring S, Brittain D, Bunschoten AE, Hughes MS, Skuce RA, van Embden JDA, Neill SD. Spacer oligotyping of Mycobacterium bovis isolates compared to typing by restriction fragment length polymorphism using PGRS, DR and IS6110 probes. Vet Microbiol. 1998. 61:111–120.
Article
15. Roring S, Scott A, Brittain D, Walker I, Hewinson G, Neill S, Skuce R. Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol. 2002. 40:2126–2133.
Article
16. Roring S, Scott AN, Glyn HR, Neill SD, Skuce RA. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol. 2004. 101:65–73.
Article
17. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986. 51:873–884.
Article
18. Serraino A, Marchetti G, Sanguinetti V, Rossi MC, Zanoni RG, Catozzi L, Bandera A, Dini W, Mignone W, Franzetti F, Gori A. Monitoring of transmission of tuberculosis between wild boars and cattle: genotypical analysis of strains by molecular epidemiology techniques. J Clin Microbiol. 1999. 37:2766–2771.
Article
19. Skuce RA, McCorry TP, McCarroll JF, Roring SMM, Scott AN, Brittain D, Hughes SL, Hewinson RG, Neill SD. Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology. 2002. 148:519–528.
Article
20. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000. 36:762–771.
Article
21. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001. 39:3563–3571.
Article
22. van Deutekom H, Supply P, de Haas PE, Willery E, Hoijng SP, Locht C, Coutinho RA, van Soolingen D. Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis. J Clin Microbiol. 2005. 43:4473–4479.
23. van Soolingen D, Hermans PWM, de Haas PEW, Soll DR, van Embden JDA. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991. 29:2578–2586.
Article
24. van Soolingen D, Borgdorff MW, de Haas PE, Sebek MM, Veen J, Dessens M, Kremer K, van Embden JDA. Molecular epidemiology of tuberculosis in the Netherlands: a nationwide study from 1993 through 1997. J Infect Dis. 1999. 180:726–736.
Article
25. van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med. 2001. 249:1–26.
26. Wedlock DN, Skinner MA, de Lisle GW, Buddle BM. Control of Mycobacterium bovis infections and the risk to human populations. Microbes Infect. 2002. 4:471–480.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr