Exp Mol Med.  2003 Oct;35(5):325-335.

Phagocytosis induces superoxide formation and apoptosis in macrophages

Affiliations
  • 1Department of Biochemistry, College of Medicine, Hallym University, Ockchon 1, Kangwon-do 200-702, Korea.

Abstract

Phagocytosis by inflammatory cells is an essential step and a part of innate immunity for protection against foreign pathogens, microorganism or dead cells. Phagocytosis, endocytotic events sequel to binding particle ligands to the specific receptors on phagocyte cell surface such as Fcgamma recptor (FcgammaR), complement receptor (CR), beta-glucan receptor, and phosphatidylserine (PS) receptor, require actin assembly, pseudopod extension and phagosome closure. Rho GTPases (RhoA, Cdc42, and Rac1) are critically involved in these processes. Abrupt superoxide formation, called as oxidative burst, occurs through NADPH oxidase complex in leukocytes following phagocytosis. NADPH oxidase complex is composed of membrane proteins, p22(PHOX)and gp91(PHOX), and cytosolic proteins, p40(PHOX), p47(PHOX)and p67(PHOX). The cytosolic subunits and Rac-GTP are translocated to the membrane, forming complete NADPH oxidase complex with membrane part subunits. Binding of imunoglobulin G (IgG)- and complement-opsonized particles to FcgammaR and CR of leukocytes induces apoptosis of the cells, which may be due to oxidative burst and accompanying cytochrome c release and casapase-3 activation.


MeSH Terms

Animals
Apoptosis/*physiology
Human
Macrophages/*cytology/*metabolism
NADPH Oxidase/metabolism
Phagocytosis/*physiology
Reactive Oxygen Species/metabolism
Superoxides/*metabolism
Support, Non-U.S. Gov't
Full Text Links
  • EMM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr