Korean J Radiol.  2012 Feb;13(1):1-11. 10.3348/kjr.2012.13.1.1.

CT Radiation Dose Optimization and Estimation: an Update for Radiologists

Affiliations
  • 1Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea. hwgoo@amc.seoul.kr

Abstract

In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method.

Keyword

CT radiation dose; Low dose CT; Radiation dose reduction; MDCT

MeSH Terms

Body Size
Cardiac-Gated Imaging Techniques/methods
Humans
*Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted
Radiometry
Risk Assessment
Tomography, X-Ray Computed/*methods

Figure

  • Fig. 1 Axial contrast-enhanced chest CT images using dual-source CT system with different energy levels (A: 80 kVp, B: mixed with composition ratio of 0.4, C: 140 kVp with tin filter). Degree of contrast enhancement is higher at 80 kVp (A) than at 140 kVp with tin filter (C) as result of different X-ray linear attenuation coefficients between iodine and water. Images (A, C) reconstructed from single X-ray source appear to be noisier than mixed image (B) because of difference in radiation dose by factor of approximately two.

  • Fig. 2 Diagram illustrating overbeaming, overranging, and adaptive section collimation technology during spiral scanning.

  • Fig. 3 Volume-rendered cardiac CT images seen from feet. Compared with image using standard reconstruction algorithm (A), image using conventional noise-reducing reconstruction filter (B) shows degraded anatomic details of small peripheral pulmonary vessels.

  • Fig. 4 Graph showing difference in radiation dose between peak dose and CT dose index (modified from reference [60]). Dose from CT scanning without table increment is overestimated by factor of two or more with CT dose index (CTDI) values in comparison with point dose values.


Cited by  21 articles

Four-Dimensional Thoracic CT in Free-Breathing Children
Hyun Woo Goo
Korean J Radiol. 2019;20(1):50-57.    doi: 10.3348/kjr.2018.0325.

Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing
Hyun Woo Goo, Sang Joon Park, Shi-Joon Yoo
Korean J Radiol. 2020;21(2):133-145.    doi: 10.3348/kjr.2019.0625.

Basic Physical Principles and Clinical Applications of Computed Tomography
Haijo Jung
Prog Med Phys. 2021;32(1):1-17.    doi: 10.14316/pmp.2021.32.1.1.

Bronchopulmonary Dysplasia: New High Resolution Computed Tomography Scoring System and Correlation between the High Resolution Computed Tomography Score and Clinical Severity
Su-Mi Shin, Woo Sun Kim, Jung-Eun Cheon, Han Suk Kim, Whal Lee, Ah Young Jung, In-One Kim, Jung Hwan Choi
Korean J Radiol. 2013;14(2):350-360.    doi: 10.3348/kjr.2013.14.2.350.

Effects of Dual-Energy CT with Non-Linear Blending on Abdominal CT Angiography
Sulan Li, Chaoqin Wang, Xiaochen Jiang, Ge Xu
Korean J Radiol. 2014;15(4):430-438.    doi: 10.3348/kjr.2014.15.4.430.

Coronary Artery Imaging in Children
Hyun Woo Goo
Korean J Radiol. 2015;16(2):239-250.    doi: 10.3348/kjr.2015.16.2.239.

Dual-Energy CT: New Horizon in Medical Imaging
Hyun Woo Goo, Jin Mo Goo
Korean J Radiol. 2017;18(4):555-569.    doi: 10.3348/kjr.2017.18.4.555.

Combined Electrocardiography- and Respiratory-Triggered CT of the Lung to Reduce Respiratory Misregistration Artifacts between Imaging Slabs in Free-Breathing Children: Initial Experience
Hyun Woo Goo, Thomas Allmendinger
Korean J Radiol. 2017;18(5):860-866.    doi: 10.3348/kjr.2017.18.5.860.

Computed Tomography-Based Ventricular Volumes and Morphometric Parameters for Deciding the Treatment Strategy in Children with a Hypoplastic Left Ventricle: Preliminary Results
Hyun Woo Goo, Sang-Hyub Park
Korean J Radiol. 2018;19(6):1042-1052.    doi: 10.3348/kjr.2018.19.6.1042.

Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography
Sang Youn Kim, Jeong Yeon Cho, Joongyub Lee, Sung Il Hwang, Min Hoan Moon, Eun Ju Lee, Seong Sook Hong, Chan Kyo Kim, Kyeong Ah Kim, Sung Bin Park, Deuk Jae Sung, Yongsoo Kim, You Me Kim, Sung Il Jung, Sung Eun Rha, Dong Won Kim, Hyun Lee, Youngsup Shim, Inpyeong Hwang, Sungmin Woo, Hyuck Jae Choi
Korean J Radiol. 2018;19(6):1119-1129.    doi: 10.3348/kjr.2018.19.6.1119.

Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT
Ki Baek Lee, Hyun Woo Goo
Korean J Radiol. 2018;19(1):119-129.    doi: 10.3348/kjr.2018.19.1.119.

Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?
Hyun Woo Goo
Korean J Radiol. 2018;19(4):692-703.    doi: 10.3348/kjr.2018.19.4.692.

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging
Hyun Woo Goo
Korean J Radiol. 2019;20(1):102-113.    doi: 10.3348/kjr.2018.0237.

Computed Tomography Pulmonary Vascular Volume Ratio Can Be Used to Evaluate the Effectiveness of Pulmonary Angioplasty in Peripheral Pulmonary Artery Stenosis
Hyun Woo Goo
Korean J Radiol. 2019;20(10):1422-1430.    doi: 10.3348/kjr.2019.0286.

User-Friendly Vendor-Specific Guideline for Pediatric Cardiothoracic Computed Tomography Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging Techniques
Sun Hwa Hong, Hyun Woo Goo, Eriko Maeda, Ki Seok Choo, I-Chen Tsai,
Korean J Radiol. 2019;20(2):190-204.    doi: 10.3348/kjr.2018.0571.

Radiation Safety in Emergency Medicine: Balancing the Benefits and Risks
Raja Rizal Azman, Mohammad Nazri Md Shah, Kwan Hoong Ng
Korean J Radiol. 2019;20(3):399-404.    doi: 10.3348/kjr.2018.0416.

Changes in Right Ventricular Volume, Volume Load, and Function Measured with Cardiac Computed Tomography over the Entire Time Course of Tetralogy of Fallot
Hyun Woo Goo
Korean J Radiol. 2019;20(6):956-966.    doi: 10.3348/kjr.2018.0891.

Diagnosis of Pulmonary Arterial Hypertension in Children by Using Cardiac Computed Tomography
Shyh-Jye Chen, Jou-Hsuan Huang, Wen-Jeng Lee, Ming-Tai Lin, Yih-Sharng Chen, Jou-Kou Wang
Korean J Radiol. 2019;20(6):976-984.    doi: 10.3348/kjr.2018.0673.

Using 2-mSv Appendiceal CT in Usual Practice for Adolescents and Young Adults: Willingness Survey of 579 Radiologists, Emergency Physicians, and Surgeons from 20 Hospitals
Hyuk Jung Kim, Kyoung Ho Lee, Min-Jeong Kim, Sung Bin Park, Yousun Ko,
Korean J Radiol. 2020;21(1):68-76.    doi: 10.3348/kjr.2019.0010.

Use of Iterative Reconstruction and a Small Contrast Volume in Rabbit Kidney CT: Comparison with Conventional Protocol
Rihyeon Kim, Sang Youn Kim, Jeong Yeon Cho, Joongyub Lee, Seung Hyup Kim
J Korean Soc Radiol. 2018;79(2):77-87.    doi: 10.3348/jksr.2018.79.2.77.

Correlation between Bone Mineral Density Measured by Dual-Energy X-Ray Absorptiometry and Hounsfield Units Measured by Diagnostic CT in Lumbar Spine
Sungjoon Lee, Chun Kee Chung, So Hee Oh, Sung Bae Park
J Korean Neurosurg Soc. 2013;54(5):384-389.    doi: 10.3340/jkns.2013.54.5.384.


Reference

1. Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE. Cardiac CT: coronary arteries and beyond. Eur Radiol. 2007. 17:994–1008.
2. Goo HW. State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol. 2010. 11:4–18.
3. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007. 17:1510–1517.
4. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007. 357:2277–2284.
5. Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007. Radiology. 2009. 253:520–531.
6. Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology. 2011. 258:889–905.
7. Assessments on the 2006 state of CT claims reported by the Korea Health Insurance Review and Assessment Service. Accessed on November 3, 2011. Available from URL: http://biz.hira.or.kr/ICSFiles/afieldfile/2008/01/21/2006_CT.pdf.
8. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004. 230:619–628.
9. Goo HW. Pediatric CT: understanding of radiation dose and optimization of imaging techniques. J Korean Radiol Soc. 2005. 52:1–5.
10. Singh S, Kalra MK, Moore MA, Shailam R, Liu B, Toth TL, et al. Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology. 2009. 252:200–208.
11. Ketelsen D, Horger M, Buchgeister M, Fenchel M, Thomas C, Boehringer N, et al. Estimation of radiation exposure of 128-slice 4D-perfusion CT for the assessment of tumor vascularity. Korean J Radiol. 2010. 11:547–552.
12. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol. 2009. 10:235–243.
13. Yang DH, Goo HW. Pediatric 16-slice CT protocol: radiation dose and image quality. J Korean Radiol Soc. 2008. 59:333–347.
14. Tatsugami F, Husmann L, Herzog BA, Burkhard N, Valenta I, Gaemperli O, et al. Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR Am J Roentgenol. 2009. 192:635–638.
15. Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M. A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol. 2002. 75:140–150.
16. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL. Dose reduction in pediatric CT: a rational approach. Radiology. 2003. 228:352–360.
17. Kalra MK, Maher MM, Prasad SR, Hayat MS, Blake MA, Varghese J, et al. Correlation of patient weight and cross-sectional dimensions with subjective image quality at standard dose abdominal CT. Korean J Radiol. 2003. 4:234–238.
18. Jung YY, Goo HW. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight. J Korean Radiol Soc. 2008. 58:169–175.
19. Nyman U, Ahl TL, Kristiansson M, Nilsson L, Wettemark S. Patient-circumference-adapted dose regulation in body computed tomography. A practical and flexible formula. Acta Radiol. 2005. 46:396–340.
20. Reid J, Gamberoni J, Dong F, Davros W. Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: is it best to base parameter selection on object circumference? AJR Am J Roentgenol. 2010. 195:1015–1020.
21. Menke J. Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology. 2005. 236:565–571.
22. Hur G, Hong SW, Kim SY, Kim YH, Hwang YJ, Lee WR, et al. Uniform image quality achieved by tube current modulation using SD of attenuation in coronary CT angiography. AJR Am J Roentgenol. 2007. 189:188–196.
23. Qi W, Li J, Du X. Method for automatic tube current selection for obtaining a consistent image quality and dose optimization in a cardiac multidetector CT. Korean J Radiol. 2009. 10:568–574.
24. Irie T, Inoue H. Individual modulation of the tube current-seconds to achieve similar levels of image noise in contrast-enhanced abdominal CT. AJR Am J Roentgenol. 2005. 184:1514–1518.
25. Goo HW. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol. 2011. 41:839–847.
26. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender W, et al. Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol. 2000. 10:391–394.
27. Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol. 2006. 36:344–351.
28. Rizzo S, Kalra M, Schmidt B, Dalal T, Suess C, Flohr T, et al. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol. 2006. 186:673–679.
29. Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008. 28:1451–1459.
30. Goo HW, Suh DS. The influences of tube voltage and scan direction on combined tube current modulation: a phantom study. Pediatr Radiol. 2006. 36:833–840.
31. Israel GM, Herlihy S, Rubinowitz AN, Cornfeld D, Brink J. Does a combination of dose modulation with fast gantry rotation time limit CT image quality? AJR Am J Roentgenol. 2008. 191:140–144.
32. Prakash P, Kalra MK, Gilman MD, Shepard JA, Digumarthy SR. Is weight-based adjustment of automatic exposure control necessary for the reduction of chest CT radiation dose? Korean J Radiol. 2010. 11:46–53.
33. Goo HW. Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin North Am. 2011. 49:997–1010.
34. Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics. 2011. 31:835–848.
35. Kalender WA, Buchenau S, Deak P, Kellermeier M, Langner O, van Straten M, et al. Technical approaches to the optimisation of CT. Phys Med. 2008. 24:71–79.
36. Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, et al. Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol. 2006. 41:1–7.
37. von Falck C, Hartung A, Berndzen F, King B, Galanski M, Shin HO. Optimization of low-contrast detectability in thin-collimated modern multidetector CT using an interactive sliding-thin-slab averaging algorithm. Invest Radiol. 2008. 43:229–235.
38. Bankier AA, Tack D. Dose reduction strategies for thoracic multidetector computed tomography: background, current issues, and recommendations. J Thorac Imaging. 2010. 25:278–288.
39. Cohnen M, Fischer H, Hamacher J, Lins E, Kotter R, Modder U. CT of the head by use of reduced current and kilovoltage: relationship between image quality and dose reduction. AJNR Am J Neuroradiol. 2000. 21:1654–1660.
40. Mullins ME, Lev MH, Bove P, O'Reilly CE, Saini S, Rhea JT, et al. Comparison of image quality between conventional and low-dose nonenhanced head CT. AJNR Am J Neuroradiol. 2004. 25:533–538.
41. Kalender WA, Deak P, Kellermeier M, van Straten M, Vollmar SV. Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys. 2009. 36:993–1007.
42. Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys. 2010. 37:234–243.
43. van der Molen AJ, Geleijns J. Overranging in multisection CT: quantification and relative contribution to dose--comparison of four 16-section CT scanners. Radiology. 2007. 242:208–216.
44. Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N. Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys. 2007. 34:1163–1175.
45. Deak PD, Langner O, Lell M, Kalender WA. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology. 2009. 252:140–147.
46. Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography - what has been achieved and what needs to be done. Eur Radiol. 2011. 21:505–509.
47. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002. 12:1081–1086.
48. McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R, et al. Dose performance of a 64-channel dual-source CT scanner. Radiology. 2007. 243:775–784.
49. Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology. 2008. 249:71–80.
50. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008. 68:362–368.
51. Lell MM, May M, Deak P, Alibek S, Kuefner M, Kuettner A, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol. 2011. 46:116–123.
52. Geyer LL, Scherr M, Körner M, Wirth S, Deak P, Reiser MF, et al. Imaging of acute pulmonary embolism using a dual energy CT system with rapid kVp switching: initial results. Eur J Radiol. 2011. [Epub ahead of print].
53. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology. 2008. 249:119–126.
54. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology. 2008. 248:615–624.
55. Goo HW, Yang DH, Hong SJ, Yu J, Kim BJ, Seo JB, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol. 2010. 40:1490–1497.
56. Goo HW, Yang DH, Kim N, Park SI, Kim DK, Kim EA. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol. 2011. 12:25–33.
57. Fink C, Johnson TR, Michaely HJ, Morhard D, Becker C, Reiser M, et al. Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Rofo. 2008. 180:879–883.
58. Goo HW. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol. 2010. 40:1536–1544.
59. Fletcher JG, Takahashi N, Hartman R, Guimaraes L, Huprich JE, Hough DM, et al. Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am. 2009. 47:41–57.
60. Primak AN, Giraldo JC, Eusemann CD, Schmidt B, Kantor B, Fletcher JG, et al. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol. 2010. 195:1164–1174.
61. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. 2008. 249:671–681.
62. Kalra MK, Wittram C, Maher MM, Sharma A, Avinash GB, Karau K, et al. Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology. 2003. 228:257–264.
63. Mieville FA, Gudinchet F, Rizzo E, Ou P, Brunelle F, Bochud FO, et al. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality--preliminary findings. Pediatr Radiol. 2011. 41:1154–1164.
64. Winklehner A, Karlo C, Puippe G, Schmidt B, Flohr T, Goetti R. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol. 2011. 21:2521–2526.
65. Kalra MK, Dang P, Singh S, Saini S, Shepard JA. In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol. 2009. 10:156–163.
66. Coursey C, Frush DP, Yoshizumi T, Toncheva G, Nguyen G, Greenberg SB. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol. 2008. 190:W54–W61.
67. Duan X, Wang J, Christner JA, Leng S, Grant KL, McCollough CH. Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol. 2011. 197:689–695.
68. Watanabe H, Kanematsu M, Miyoshi T, Goshima S, Kondo H, Moriyama N, et al. Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. AJR Am J Roentgenol. 2010. 195:986–992.
69. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010. 257:158–166.
70. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. 2006. Washington, DC: National Academies Press.
71. European Commission. European guidelines for quality criteria for computed tomography. EUR 16262 EN. 2000. Luxembourg: European Commission.
72. Shrimpton PC. Assessment of patient dose in CT: appendix C-European guidelines for multislice computed tomography. European Commission project MSCT: CT safety & efficacy-a broad perspective. 2004. Accessed on November 3, 2011. Available at: http://www.msct.ed/PDF_FILES/Appendix%20paediatric%20CT%20Dosimetry.pdf.
73. Tsai HY, Tung CJ, Yu CC, Tyan YS. Survey of computed tomography scanners in Taiwan: dose descriptors, dose guidance levels, and effective doses. Med Phys. 2007. 34:1234–1243.
74. American College of Radiology (ACR) practice guidelines for diagnostic reference levels in medical X-ray imaging. 2008. Accessed on November 3, 2011. Available at: http://www.acr.org/SecondaryMainMenuCategories/quality_safety/RadSafety/RadiationSafety/guideline-diagnostic-reference.aspx.
75. Korea Institute for Accreditation of Medical Image. National survey of radiation dose of computed tomography in Korea. 2009.
76. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics. 2008. 28:245–253.
Full Text Links
  • KJR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr