1. McCarty CA, Taylor HR. Recent developments in vision research : light damage in cataract. Invest Ophthalmol Vis Sci. 1996. 37:1720–1723.
2. Norren DV, Vos JJ. Spectral transmission of the human ocular media. Vision Res. 1974. 14:1237–1244.
3. Margrain TH, Boulton M, Marshall J, Sliney DH. Do blue light filters confer protection against age-related macular degeneration. Prog Retin Eye Res. 2004. 23:523–531.
4. Patton WP, Chakravarthy U, Davies RJ, Archer DB. Comet assay of UV-induced DNA damage in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1999. 40:3268–3275.
5. Mainster MA. The spectra, classification, and rationale of ultraviolet-protective intraocular lenses. Am J Ophthalmol. 1986. 102:727–732.
6. Sujak A, Gbrielska J, Grudzinski W, et al. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: The structural aspects. Arch Biochem Biophys. 1997. 371:301–307.
7. Sujak A, Okulski W, Gruszecki WI. Organisation of xanthophyll pigment lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 2000. 1509:255–263.
8. Yu HG, Choe GS, Heo JW, et al. Oxidative Damage induced by UV in Cultured Retinal Pigment Epithelial Cells. J korean Ophthal Society. 2003. 44:2890–2895.
9. Sadun AC, Sadun AA, Sadun LA. Solar retinopathy. A biophysical analysis. Arch Ophthalmol. 1984. 102:1510–1512.
10. Young RW. Solar radiation and age-related macular degeneration. Surv Ophthalmol. 1988. 32:252–269.
11. Van Kuijk FJ. Effect of ultraviolet light on the eye: role of protective glasses. Environ Health Perspect. 1991. 96:177–184.
12. Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol. 1966. 5:450–473.
13. Beatty S, Koh H, Phil M, et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000. 45:115–134.
14. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. Arch Ophthalmol. 2001. 119:1417–1436.
15. Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol. 1993. 111:104–109.
16. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA. 1995. 272:1413–1420.
17. Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids Protect Human Retinal Pigment Epithelial Cells from Oxidative-Stress-Induced Death. Invest Ophthalmol Vis Sci. 2006. 47:3164–3177.
18. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol Rev. 2000. 52:673–751.
19. Wang YC, Bachrach U. The specific anti-cancer activity of green tea (-)-epigallocatechin-3-gallate (EGCG). Amino Acids. 2002. 22:131–143.
20. Kimura M, Umegaki K, Kasuya Y, et al. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur J Clin Nutr. 2002. 56:1186–1193.
21. Buttemeyer R, Philipp AW, Schlenzka L, et al. Epigallocatechin gallate can significantly decrease free oxygen radicals in the reperfusion injury in vivo. Transplant Proc. 2003. 35:3116–3120.
22. Morley N, Clifford T, Salter L, et al. The green tea polyphenol (-)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage. Photodermatol Photoimmunol Photomed. 2005. 21:15–22.
23. Nagai K, Jiang MH, Hada J, et al. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res. 2002. 956:319–322.
24. Xie D, Liu G, Zhu G, et al. (-)-Epigallocatechin-3-gallate protects cultured spiral ganglion cells from H2O2-induced oxidizing damage. Acta Otolaryngol. 2004. 124:464–470.
25. Mandel S, Weinreb O, Amit T, Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-pigallocatechin-3-gallate : implications for neurodegenerative diseases. J Neurochem. 2004. 88:1555–1569.
26. Skrzydlewska E, Ostrowska J, Farbiszewski R, Michalak K. Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine. 2002. 9:232–238.
27. Yokozawa T, Nakagawa T, Kitani K. Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem. 2002. 50:3549–3552.
28. Negishi H, Xu JW, Ikeda K, et al. Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J Nutr. 2004. 134:38–42.
29. Sutherland BA, Rahman RMA, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006. 17:291–306.
30. Chung JH, Han JH, Hwang EJ, et al. Dual mechanisms of green tea extract (EGCG) induced cell survival in human epidermal keratinocytes. FASEB J. 2003. 17:1913–1915.
31. Zhang B, Osborne NN. Oxidative-induced retinal degeneration is attenuated by Epigallocatechin gallate. Brain Res. 2006. 1124:176–187.
32. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000. 63:1035–1042.
33. Weiter JJ. Miller D, editor. Phototoxic changes in the retina. Clinical Light Damage to the Eye. 1987. New York: Springer;79–125.
34. Bynoe LA, Gottsch JD, Pou S, Rosea GM. Light-dependent generation of superoxide from human erythrocytes. Photochem Photobiol. 1992. 56(3):353–356.
35. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997. 18(4):811–816.
36. Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004. 23:91–147.
37. Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res. 2006. 612:105–114.
38. Tezel G. Oxidative stress in glaucomatous neurodegeneration : Mechanisms and consequences. Prog Retin Eye Res. 2006. 25:490–513.
39. Osborne NN, Ugate M, Chao M, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999. 43:S102–S128.
40. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998. 17:267–289.
41. Chen JH, Tipoe GL, Liong EC, et al. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants. Am J Clin Nutr. 2004. 80:742–751.
42. Tedeschi E, Suzuki H, Menegazzi M. Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann N Y Acad Sci. 2002. 973:435–437.
43. Lorenz M, Wessler S, Follmann E, et al. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem. 2004. 279:6190–6195.
44. Delaney Y, Walshe TE, O'Brien C. Vasospasm in glaucoma: Clinical and laboratory aspects. Optom Vis Sci. 2006. 83:406–414.