Korean J Orthod.  2025 May;55(3):212-223. 10.4041/kjod24.114.

Force and moment analysis of clear aligners: Impact of material properties and design on premolar rotation

Affiliations
  • 1Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
  • 2School of Dentistry, Pusan National University, Yangsan, Korea
  • 3Department of Orthodontics, Saint Louis University, Saint Louis, MO, USA
  • 4Department of Orthodontics, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Korea

Abstract


Objective
To quantitatively analyze and compare the forces and moments generated by thermoformed polyethylene terephthalate glycol (PETG) and direct-printed TC-85 clear aligners (CAs), with various margin designs, during premolar rotation.
Methods
In total, 132 CAs were fabricated and divided into four groups (n = 33 per group). Group C consisted of thermoformed PETG aligners with a 2 mm gingival margin. Group E comprised direct-printed TC-85 aligners with equi-gingival margin, whereas Group G utilized direct-printed TC-85 aligners with 2 mm gingival margins. Finally, Group T featured direct-printed TC-85 aligners with an additional 1 mm thickness at the mesial embrasure. The forces and moments were measured using a 6-axis force/moment transducer at 2°, 3°, and 4° of rotation. All measurements were conducted at 37°C to simulate intraoral conditions. Forces were measured in the buccolingual, anteroposterior, and vertical directions, while moments were measured in the mesiodistal, buccolingual, and rotational planes.
Results
The PETG aligners (Group C) showed significantly increased buccal and posterior force across the rotation angles (P < 0.05), whereas the intrusive force remained consistent. In contrast, the TC-85 aligners maintained consistent forces across all rotation angles. Direct-printed aligners demonstrated significantly lower intrusive forces than PETG aligners (P < 0.001). Group T exhibited reduced unwanted forces while maintaining effective rotational moments. Furthermore, all direct-printed aligners showed more predictable force delivery patterns than thermoformed aligners.
Conclusions
Direct-printed TC-85 aligners demonstrated superior force consistency and reduced unwanted side effects compared with traditional PETG aligners. Although marginal design modifications did not significantly improve rotational efficiency, they effectively reduced unwanted intrusive forces.

Keyword

Aligners; Rotation; Forces; Moments

Figure

  • Figure 1 Experimental apparatus design. The second premolar was separated and connected to a 6-axis miniature force/torque sensor. A rotation zig was installed on the lower side of the second premolar.

  • Figure 2 Designs of clear aligners. A, D, Group E; B, E, Group T; C, F, Groups C and G. Group E, equi-gingival margin; Group T, mesial thickness; Group C, control-polyethylene terephthalate glycol; Group G, 2 mm gingival margin.

  • Figure 3 Forces generated by four groups at each of the rotation degrees. A, Rotation degree of 2°; B, Rotation degree of 3°; C, Rotation degree of 4°. Red dot indicates the mean value, and diamond-shaped symbols (◇) represent outliers beyond 1.5 times the interquartile range. Group C, control-polyethylene terephthalate glycol; Group E, equi-gingival margin; Group T, mesial thickness; Group G, 2 mm gingival margin.

  • Figure 4 Moments generated by four groups at each of the rotation degrees. A, Rotation degree of 2°; B, Rotation degree of 3°; C, Rotation degree of 4°. Red dot indicates the mean value, and diamond-shaped symbols (◇) represent outliers beyond 1.5 times the interquartile range. Group C, control-polyethylene terephthalate glycol; Group E, equi-gingival margin; Group T, mesial thickness; Group G, 2 mm gingival margin.

  • Figure 5 Conventional type (PETG material) and direct-printing type (TC-85 material) clear aligners fitting in the embrasure area. PETG, polyethylene terephthalate glycol.


Reference

1. Jeremiah HG, Bister D, Newton JT. 2011; Social perceptions of adults wearing orthodontic appliances: a cross-sectional study. Eur J Orthod. 33:476–82. https://doi.org/10.1093/ejo/cjq069. DOI: 10.1093/ejo/cjq069. PMID: 20651044.
Article
2. Djeu G, Shelton C, Maganzini A. 2005; Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. Am J Orthod Dentofacial Orthop. 128:292–8. discussion 298https://doi.org/10.1016/j.ajodo.2005.06.002. DOI: 10.1016/j.ajodo.2005.06.002. PMID: 16168325.
Article
3. Gu J, Tang JS, Skulski B, Fields HW Jr, Beck FM, Firestone AR, et al. 2017; Evaluation of Invisalign treatment effectiveness and efficiency compared with conventional fixed appliances using the Peer Assessment Rating index. Am J Orthod Dentofacial Orthop. 151:259–66. https://doi.org/10.1016/j.ajodo.2016.06.041. DOI: 10.1016/j.ajodo.2016.06.041. PMID: 28153154.
Article
4. Galan-Lopez L, Barcia-Gonzalez J, Plasencia E. 2019; A systematic review of the accuracy and efficiency of dental movements with Invisalign®. Korean J Orthod. 49:140–9. https://doi.org/10.4041/kjod.2019.49.3.140. DOI: 10.4041/kjod.2019.49.3.140. PMID: 31149604. PMCID: PMC6533182.
Article
5. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. 2015; Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 85:881–9. https://doi.org/10.2319/061614-436.1. DOI: 10.2319/061614-436.1. PMID: 25412265. PMCID: PMC8610387.
Article
6. Robertson L, Kaur H, Fagundes NCF, Romanyk D, Major P, Flores Mir C. 2020; Effectiveness of clear aligner therapy for orthodontic treatment: a systematic review. Orthod Craniofac Res. 23:133–42. https://doi.org/10.1111/ocr.12353. DOI: 10.1111/ocr.12353. PMID: 31651082.
Article
7. Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. 2014; Treatment outcome and efficacy of an aligner technique--regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health. 14:68. https://doi.org/10.1186/1472-6831-14-68. DOI: 10.1186/1472-6831-14-68. PMID: 24923279. PMCID: PMC4068978.
Article
8. Charalampakis O, Iliadi A, Ueno H, Oliver DR, Kim KB. 2018; Accuracy of clear aligners: a retrospective study of patients who needed refinement. Am J Orthod Dentofacial Orthop. 154:47–54. https://doi.org/10.1016/j.ajodo.2017.11.028. DOI: 10.1016/j.ajodo.2017.11.028. PMID: 29957318.
Article
9. Cervinara F, Cianci C, De Cillis F, Pappalettera G, Pappalettere C, Siciliani G, et al. 2019; Experimental study of the pressures and points of application of the forces exerted between aligner and tooth. Nanomaterials (Basel). 9:1010. https://doi.org/10.3390/nano9071010. DOI: 10.3390/nano9071010. PMID: 31336979. PMCID: PMC6669747. PMID: 24315cd63aa54dbeaf43e58f85f769e3.
Article
10. Jiang T, Wu RY, Wang JK, Wang HH, Tang GH. 2020; Clear aligners for maxillary anterior en masse retraction: a 3D finite element study. Sci Rep. 10:10156. https://doi.org/10.1038/s41598-020-67273-2. DOI: 10.1038/s41598-020-67273-2. PMID: 32576935. PMCID: PMC7311544.
Article
11. Gomez JP, Peña FM, Martínez V, Giraldo DC, Cardona CI. 2015; Initial force systems during bodily tooth movement with plastic aligners and composite attachments: a three-dimensional finite element analysis. Angle Orthod. 85:454–60. https://doi.org/10.2319/050714-330.1. DOI: 10.2319/050714-330.1. PMID: 25181252. PMCID: PMC8612436.
Article
12. Cortona A, Rossini G, Parrini S, Deregibus A, Castroflorio T. 2020; Clear aligner orthodontic therapy of rotated mandibular round-shaped teeth: a finite element study. Angle Orthod. 90:247–54. https://doi.org/10.2319/020719-86.1. DOI: 10.2319/020719-86.1. PMID: 31469592. PMCID: PMC8051248.
Article
13. Hong K, Kim WH, Eghan-Acquah E, Lee JH, Lee BK, Kim B. 2021; Efficient design of a clear aligner attachment to induce bodily tooth movement in orthodontic treatment using finite element analysis. Materials (Basel). 14:4926. https://doi.org/10.3390/ma14174926. DOI: 10.3390/ma14174926. PMID: 34501017. PMCID: PMC8433704.
Article
14. Seo JH, Eghan-Acquah E, Kim MS, Lee JH, Jeong YH, Jung TG, et al. 2021; Comparative analysis of stress in the periodontal ligament and center of rotation in the tooth after orthodontic treatment depending on clear aligner thickness-finite element analysis study. Materials (Basel). 14:324. https://doi.org/10.3390/ma14020324. DOI: 10.3390/ma14020324. PMID: 33435457. PMCID: PMC7826543.
Article
15. Yokoi Y, Arai A, Kawamura J, Uozumi T, Usui Y, Okafuji N. 2019; Effects of attachment of plastic aligner in closing of diastema of maxillary dentition by finite element method. J Healthc Eng. 2019:1075097. https://doi.org/10.1155/2019/1075097. DOI: 10.1155/2019/1075097. PMID: 30944717. PMCID: PMC6421825.
Article
16. Grant J, Foley P, Bankhead B, Miranda G, Adel SM, Kim KB. 2023; Forces and moments generated by 3D direct printed clear aligners of varying labial and lingual thicknesses during lingual movement of maxillary central incisor: an in vitro study. Prog Orthod. 24:23. https://doi.org/10.1186/s40510-023-00475-2. DOI: 10.1186/s40510-023-00475-2. PMID: 37423974. PMCID: PMC10329968. PMID: dde3a9dad6254735b63e88aa717b05b0.
Article
17. Grünheid T, Loh C, Larson BE. 2017; How accurate is Invisalign in nonextraction cases? Are predicted tooth positions achieved? Angle Orthod. 87:809–15. https://doi.org/10.2319/022717-147.1. DOI: 10.2319/022717-147.1. PMID: 28686090. PMCID: PMC8317555.
Article
18. Lombardo L, Arreghini A, Ramina F, Huanca Ghislanzoni LT, Siciliani G. 2017; Predictability of orthodontic movement with orthodontic aligners: a retrospective study. Prog Orthod. 18:35. https://doi.org/10.1186/s40510-017-0190-0. DOI: 10.1186/s40510-017-0190-0. PMID: 29130127. PMCID: PMC5682257. PMID: 6a742898868040d58c7b55aee2d8b42c.
Article
19. Haouili N, Kravitz ND, Vaid NR, Ferguson DJ, Makki L. 2020; Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. Am J Orthod Dentofacial Orthop. 158:420–5. https://doi.org/10.1016/j.ajodo.2019.12.015. DOI: 10.1016/j.ajodo.2019.12.015. PMID: 32620479.
Article
20. Hahn W, Engelke B, Jung K, Dathe H, Fialka-Fricke J, Kubein-Meesenburg D, et al. 2010; Initial forces and moments delivered by removable thermoplastic appliances during rotation of an upper central incisor. Angle Orthod. 80:239–46. https://doi.org/10.2319/033009-181.1. DOI: 10.2319/033009-181.1. PMID: 19905847. PMCID: PMC8973237.
Article
21. Kravitz ND, Kusnoto B, Agran B, Viana G. 2008; Influence of attachments and interproximal reduction on the accuracy of canine rotation with Invisalign. A prospective clinical study. Angle Orthod. 78:682–7. https://doi.org/10.2319/0003-3219(2008)078[0682:Ioaair]2.0.Co;2. DOI: 10.2319/0003-3219(2008)078[0682:IOAAIR]2.0.CO;2. PMID: 18302468.
Article
22. Liu CL, Sun WT, Liao W, Lu WX, Li QW, Jeong Y, et al. 2016; Colour stabilities of three types of orthodontic clear aligners exposed to staining agents. Int J Oral Sci. 8:246–53. https://doi.org/10.1038/ijos.2016.25. DOI: 10.1038/ijos.2016.25. PMID: 27660048. PMCID: PMC5168413.
Article
23. Condo R, Pazzini L, Cerroni L, Pasquantonio G, Lagana G, Pecora A, et al. 2018; Mechanical properties of "two generations" of teeth aligners: change analysis during oral permanence. Dent Mater J. 37:835–42. https://doi.org/10.4012/dmj.2017-323. DOI: 10.4012/dmj.2017-323. PMID: 29998941.
Article
24. Bendler JT. 1999. Handbook of polycarbonate science and technology. CRC Press;Boca Raton: https://search.worldcat.org/ko/title/1027759168. DOI: 10.1201/9781482273694.
25. Lu QW, Macosko CW. 2004; Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer (Guildf). 45:1981–91. https://doi.org/10.1016/j.polymer.2003.12.077. DOI: 10.1016/j.polymer.2003.12.077.
Article
26. Johal A, Sharma NR, McLaughlin K, Zou LF. 2015; The reliability of thermoform retainers: a laboratory-based comparative study. Eur J Orthod. 37:503–7. https://doi.org/10.1093/ejo/cju075. DOI: 10.1093/ejo/cju075. PMID: 25431104.
Article
27. Min S, Hwang CJ, Yu HS, Lee SB, Cha JY. 2010; The effect of thickness and deflection of orthodontic thermoplastic materials on its mechanical properties. Korean J Orthod. 40:16–26. https://doi.org/10.4041/kjod.2010.40.1.16. DOI: 10.4041/kjod.2010.40.1.16.
Article
28. Ryokawa H, Miyazaki Y, Fujishima A, Miyazaki T, Maki K. 2006; The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthod Waves. 65:64–72. https://doi.org/https://doi.org/10.1016/j.odw.2006.03.003. DOI: 10.1016/j.odw.2006.03.003.
Article
29. Ryu JH, Kwon JS, Jiang HB, Cha JY, Kim KM. 2018; Effects of thermoforming on the physical and mechanical properties of thermoplastic materials for transparent orthodontic aligners. Korean J Orthod. 48:316–25. https://doi.org/10.4041/kjod.2018.48.5.316. DOI: 10.4041/kjod.2018.48.5.316. PMID: 30206530. PMCID: PMC6123073.
Article
30. Lee SY, Kim H, Kim HJ, Chung CJ, Choi YJ, Kim SJ, et al. 2022; Thermo-mechanical properties of 3D printed photocurable shape memory resin for clear aligners. Sci Rep. 12:6246. https://doi.org/10.1038/s41598-022-09831-4. DOI: 10.1038/s41598-022-09831-4. PMID: 35428796. PMCID: PMC9012852. PMID: 916cae2b1906469492ffad0957859600.
Article
31. Masella RS, Meister M. 2006; Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 129:458–68. https://doi.org/10.1016/j.ajodo.2005.12.013. DOI: 10.1016/j.ajodo.2005.12.013. PMID: 16627170.
Article
32. Proffit WR, Fields HW, Larson B, Sarver DM. 2018. Contemporary orthodontics. 6th ed. Mosby;Philadelphia: https://search.worldcat.org/ko/title/1053796533. DOI: 10.1053/j.sodo.2018.10.005.
33. Elkholy F, Mikhaiel B, Repky S, Schmidt F, Lapatki BG. 2019; Effect of different attachment geometries on the mechanical load exerted by PET-G aligners during derotation of mandibular canines: an in vitro study. J Orofac Orthop. 80:315–26. https://doi.org/10.1007/s00056-019-00193-7. DOI: 10.1007/s00056-019-00193-7. PMID: 31595320.
Article
34. Ferlias N, Dalstra M, Cornelis MA, Cattaneo PM. 2022; In vitro comparison of different Invisalign® and 3Shape® attachment shapes to control premolar rotation. Front Bioeng Biotechnol. 10:840622. https://doi.org/10.3389/fbioe.2022.840622. DOI: 10.3389/fbioe.2022.840622. PMID: 35372304. PMCID: PMC8966893. PMID: f5ac4683d4e649fab5a415605e6e3fc3.
Article
35. Brezniak N. 2008; The clear plastic appliance: a biomechanical point of view. Angle Orthod. 78:381–2. https://doi.org/10.2319/0003-3219(2008)078[0381:Tcpa]2.0.Co;2. DOI: 10.2319/0003-3219(2008)078[0381:TCPA]2.0.CO;2. PMID: 18251593.
Article
36. Hahn W, Zapf A, Dathe H, Fialka-Fricke J, Fricke-Zech S, Gruber R, et al. 2010; Torquing an upper central incisor with aligners--acting forces and biomechanical principles. Eur J Orthod. 32:607–13. https://doi.org/10.1093/ejo/cjq007. DOI: 10.1093/ejo/cjq007. PMID: 20462912.
Article
37. Bowman SJ. 2017; Improving the predictability of clear aligners. Semin Orthod. 23:65–75. https://doi.org/10.1053/j.sodo.2016.10.005. DOI: 10.1053/j.sodo.2016.10.005.
Article
38. Savignano R, Valentino R, Razionale AV, Michelotti A, Barone S, D'Antò V. 2019; Biomechanical effects of different auxiliary-aligner designs for the extrusion of an upper central incisor: a finite element analysis. J Healthc Eng. 2019:9687127. https://doi.org/10.1155/2019/9687127. DOI: 10.1155/2019/9687127. PMID: 31485303. PMCID: PMC6702849.
Article
39. Meier B, Wiemer KB, Miethke RR. 2003; Invisalign--patient profiling. Analysis of a prospective survey. J Orofac Orthop. 64:352–8. https://doi.org/10.1007/s00056-003-0301-z. DOI: 10.1007/s00056-003-0301-z. PMID: 14692049.
Article
40. Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. 2014; Forces and moments generated by removable thermoplastic aligners: incisor torque, premolar derotation, and molar distalization. Am J Orthod Dentofacial Orthop. 145:728–36. https://doi.org/10.1016/j.ajodo.2014.03.015. DOI: 10.1016/j.ajodo.2014.03.015. PMID: 24880843.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr