Korean J Orthod.  2025 May;55(3):193-201. 10.4041/kjod24.286.

Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction

Affiliations
  • 1Department of Orthodontics, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Korea
  • 2Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
  • 3Department of Orthodontics, Saint Louis University, Saint Louis, MO, USA

Abstract


Objective
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results
All the groups initially showed crown displacement, distal tipping, and distal rotation. Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.

Keyword

Finite element method; Extraction space; Clear aligner design

Figure

  • Figure 1 All components of the finite element method model with the coordinate system.

  • Figure 2 Four designs of the clear aligner finite element method model. A, Group 1: No-pontic design; B, Group 2: Full-pontic design; C, Group 3: Half-pontic design; D, Group 4: Beam design.

  • Figure 3 Comparative displacements of the maxillary right canine across the four groups.

  • Figure 4 Canine distal tipping obtained by iterative calculations in the four groups.

  • Figure 5 Occlusal view of canine distal rotation across the four groups during iterative calculations.

  • Figure 6 Canine movement patterns over 50 iterations (n = 50).

  • Figure 7 Stage-dependent changes in canine force with aligner designs. A, Overall force across 50 stages; B, Detailed view of force distribution.

  • Figure 8 Changes in canine moment across different aligner designs.


Reference

1. Cheng Y, Gao J, Fang S, Wang W, Ma Y, Jin Z. 2022; Torque movement of the upper anterior teeth using a clear aligner in cases of extraction: a finite element study. Prog Orthod. 23:26. https://doi.org/10.1186/s40510-022-00421-8. DOI: 10.1186/s40510-022-00421-8. PMID: 35909188. PMCID: PMC9339452. PMID: f3e1a15f9ed34301b4003fff6fc9978f.
Article
2. Elshazly TM, Bourauel C, Aldesoki M, Ghoneima A, Abuzayda M, Talaat W, et al. 2023; Computer-aided finite element model for biomechanical analysis of orthodontic aligners. Clin Oral Investig. 27:115–24. https://doi.org/10.1007/s00784-022-04692-7. DOI: 10.1007/s00784-022-04692-7. PMID: 35989373.
Article
3. Dasy H, Dasy A, Asatrian G, Rózsa N, Lee HF, Kwak JH. 2015; Effects of variable attachment shapes and aligner material on aligner retention. Angle Orthod. 85:934–40. https://doi.org/10.2319/091014-637.1. DOI: 10.2319/091014-637.1. PMID: 26516708. PMCID: PMC8612059.
Article
4. Cortona A, Rossini G, Parrini S, Deregibus A, Castroflorio T. 2020; Clear aligner orthodontic therapy of rotated mandibular round-shaped teeth: a finite element study. Angle Orthod. 90:247–54. https://doi.org/10.2319/020719-86.1. DOI: 10.2319/020719-86.1. PMID: 31469592. PMCID: PMC8051248.
Article
5. D'Antò V, Bocchino T, Levatè C, Buono R, Razionale A, Barone S, et al. 2024; Biomechanical effects of different auxiliary-aligner designs on the rotation of an upper canine: a finite element analysis of a specific patient. Appl Sci. 14:2308. https://www.mdpi.com/2076-3417/14/6/2308. DOI: 10.3390/app14062308. PMID: bf48b9ce50b54174bb807c2d8b847a2c.
6. Dai FF, Xu TM, Shu G. 2021; Comparison of achieved and predicted crown movement in adults after 4 first premolar extraction treatment with Invisalign. Am J Orthod Dentofacial Orthop. 160:805–13. https://doi.org/10.1016/j.ajodo.2020.06.041. DOI: 10.1016/j.ajodo.2020.06.041. PMID: 34344557.
Article
7. Cheng Y, Liu X, Chen X, Li X, Fang S, Wang W, et al. 2022; The three-dimensional displacement tendency of teeth depending on incisor torque compensation with clear aligners of different thicknesses in cases of extraction: a finite element study. BMC Oral Health. 22:499. https://doi.org/10.1186/s12903-022-02521-7. DOI: 10.1186/s12903-022-02521-7. PMID: 36384512. PMCID: PMC9670623. PMID: 768eaba0adc04a52a78c1a6fe69c8a2e.
Article
8. Liu L, Song Q, Zhou J, Kuang Q, Yan X, Zhang X, et al. 2022; The effects of aligner overtreatment on torque control and intrusion of incisors for anterior retraction with clear aligners: a finite-element study. Am J Orthod Dentofacial Orthop. 162:33–41. https://doi.org/10.1016/j.ajodo.2021.02.020. DOI: 10.1016/j.ajodo.2021.02.020. PMID: 35219555.
Article
9. Meng X, Wang C, Xu W, Wang R, Zheng L, Wang C, et al. 2023; Effects of different designs of orthodontic clear aligners on the maxillary central incisors in the tooth extraction cases: a biomechanical study. BMC Oral Health. 23:416. https://doi.org/10.1186/s12903-023-03106-8. DOI: 10.1186/s12903-023-03106-8. PMID: 37349701. PMCID: PMC10288704. PMID: 730e97a860524051b1e7c5382f99c1a4.
Article
10. Inan A, Gonca M. 2023; Effects of aligner activation and power arm length and material on canine displacement and periodontal ligament stress: a finite element analysis. Prog Orthod. 24:40. https://doi.org/10.1186/s40510-023-00492-1. DOI: 10.1186/s40510-023-00492-1. PMID: 38008884. PMCID: PMC10678869. PMID: d44fc131ed5940cc8c3ea7a65babf385.
Article
11. Liu L, Zhan Q, Zhou J, Kuang Q, Yan X, Zhang X, et al. 2021; Effectiveness of an anterior mini-screw in achieving incisor intrusion and palatal root torque for anterior retraction with clear aligners. Angle Orthod. 91:794–803. https://doi.org/10.2319/120420-982.1. DOI: 10.2319/120420-982.1. PMID: 34061964. PMCID: PMC8549549.
Article
12. Kawamura J, Tamaya N. 2019; A finite element analysis of the effects of archwire size on orthodontic tooth movement in extraction space closure with miniscrew sliding mechanics. Prog Orthod. 20:3. https://doi.org/10.1186/s40510-018-0255-8. DOI: 10.1186/s40510-018-0255-8. PMID: 30663006. PMCID: PMC6339866. PMID: 00accc94414f46dba4471693b45f4ac0.
Article
13. Yokoi Y, Arai A, Kawamura J, Uozumi T, Usui Y, Okafuji N. 2019; Effects of attachment of plastic aligner in closing of diastema of maxillary dentition by finite element method. J Healthc Eng. 2019:1075097. https://doi.org/10.1155/2019/1075097. DOI: 10.1155/2019/1075097. PMID: 30944717. PMCID: PMC6421825.
Article
14. Kojima Y, Mizuno T, Fukui H. 2007; A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofacial Orthop. 132:630–8. https://doi.org/10.1016/j.ajodo.2005.07.035. DOI: 10.1016/j.ajodo.2005.07.035. PMID: 18005837.
Article
15. Jiang T, Wu RY, Wang JK, Wang HH, Tang GH. 2020; Clear aligners for maxillary anterior en masse retraction: a 3D finite element study. Sci Rep. 10:10156. https://doi.org/10.1038/s41598-020-67273-2. DOI: 10.1038/s41598-020-67273-2. PMID: 32576935. PMCID: PMC7311544.
Article
16. Zhang Y, Wang K, Li M, Liu C, Tang L, Wan C, et al. 2024; Effects of different intrusion patterns during anterior teeth retraction using clear aligners in extraction cases: an iterative finite element analysis. Front Bioeng Biotechnol. 12:1388876. https://doi.org/10.3389/fbioe.2024.1388876. DOI: 10.3389/fbioe.2024.1388876. PMID: 38903188. PMCID: PMC11186992. PMID: dc4ac139d72542eeb8968a85d5887a5d.
Article
17. Mao B, Tian Y, Xiao Y, Liu J, Liu D, Li J, et al. 2024; Biomechanical effects of clear aligner with different shape design at extraction space area during anterior teeth retraction. Orthod Craniofac Res. 27:740–9. https://doi.org/10.1111/ocr.12795. DOI: 10.1111/ocr.12795. PMID: 38651920.
Article
18. Migliorati M, Drago S, Castroflorio T, Pesce P, Battista G, Campobasso A, et al. 2024; Accuracy of orthodontic movements with 3D printed aligners: a prospective observational pilot study. Korean J Orthod. 54:160–70. https://doi.org/10.4041/kjod23.268. DOI: 10.4041/kjod23.268. PMID: 38800861. PMCID: PMC11129935.
Article
19. Castroflorio T, Sedran A, Parrini S, Garino F, Reverdito M, Capuozzo R, et al. 2023; Predictability of orthodontic tooth movement with aligners: effect of treatment design. Prog Orthod. 24:2. https://doi.org/10.1186/s40510-022-00453-0. DOI: 10.1186/s40510-022-00453-0. PMID: 36642743. PMCID: PMC9840984. PMID: 1571300819e047afab9a2eac084eec89.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr