1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71:209–249. PMID:
33538338.
Article
2. Park EH, Jung KW, Park NJ, Kang MJ, Yun EH, Kim HJ, Kim JE, Kong HJ, Im JS, Seo HG, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2021. Cancer Res Treat. 2024; 56:357–371. PMID:
38487832.
Article
3. Kwan ML, Weltzien E, Kushi LH, Castillo A, Slattery ML, Caan BJ. Dietary patterns and breast cancer recurrence and survival among women with early-stage breast cancer. J Clin Oncol. 2009; 27:919–926. PMID:
19114692.
Article
4. Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, Navarro Rosenblatt D, Thune I, Vieira R, Norat T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014; 25:1901–1914. PMID:
24769692.
Article
5. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015; 54:635–654. PMID:
25752971.
Article
6. He J, Gu Y, Zhang S. Consumption of vegetables and fruits and breast cancer survival: a systematic review and meta-analysis. Sci Rep. 2017; 7:599. PMID:
28377568.
Article
7. Jayedi A, Emadi A, Khan TA, Abdolshahi A, Shab-Bidar S. Dietary fiber and survival in women with breast cancer: a dose-response meta-analysis of prospective cohort studies. Nutr Cancer. 2021; 73:1570–1580. PMID:
32795218.
Article
8. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr. 2005; 82:497–503. PMID:
16155259.
Article
9. Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. Trends Analyt Chem. 2005; 24:285–294.
Article
10. Silva C, Perestrelo R, Silva P, Tomás H, Câmara JS. Breast cancer metabolomics: from analytical platforms to multivariate data analysis. a review. Metabolites. 2019; 9:102. PMID:
31121909.
Article
11. McCartney A, Vignoli A, Biganzoli L, Love R, Tenori L, Luchinat C, Di Leo A. Metabolomics in breast cancer: a decade in review. Cancer Treat Rev. 2018; 67:88–96. PMID:
29775779.
Article
12. Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson MP, Rossary A, Demidem A, Galan P, Hercberg S, et al. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 2018; 47:484–494. PMID:
29365091.
Article
13. Yang L, Wang Y, Cai H, Wang S, Shen Y, Ke C. Application of metabolomics in the diagnosis of breast cancer: a systematic review. J Cancer. 2020; 11:2540–2551. PMID:
32201524.
Article
14. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GA, Owusu-Sarfo K, Ballas RA, Raftery D. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010; 70:8309–8318. PMID:
20959483.
Article
15. Jobard E, Pontoizeau C, Blaise BJ, Bachelot T, Elena-Herrmann B, Trédan O. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett. 2014; 343:33–41. PMID:
24041867.
Article
16. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, Fornier M, Hudis C, Norton L, Luchinat C, et al. Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol. 2015; 9:128–139. PMID:
25151299.
Article
17. Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé AEA. Metabolomics and multi-omics integration: a survey of computational methods and resources. Metabolites. 2020; 10:202. PMID:
32429287.
Article
18. Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979; 28:100–108.
Article
19. In : Schubert E, Rousseeuw PJ, editors. Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. Similarity Search and Applications, SISAP 2019; 2019 Oct 2-4; Newark, NJ, USA. Cham: Springer;2019.
20. Kohonen T. The self-organizing map. Neurocomputing. 1998; 21:1–6.
Article
21. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York (NY): Springer New York;2017. p. 520–527.
22. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, Weaver DL, Winchester DJ, Hortobagyi GN. Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017; 67:290–303. PMID:
28294295.
Article
23. Shin WK, Song S, Hwang E, Moon HG, Noh DY, Lee JE. Development of a FFQ for breast cancer survivors in Korea. Br J Nutr. 2016; 116:1781–1786. PMID:
27842613.
Article
24. Moon SE, Shin WK, Song S, Koh D, Ahn JS, Yoo Y, Kang M, Lee JE. Validity and reproducibility of a food frequency questionnaire for breast cancer survivors in Korea. Nutr Res Pract. 2022; 16:789–800. PMID:
36467770.
Article
25. Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015; 8:192–206. PMID:
25691689.
Article
27. Kettunen J, Demirkan A, Würtz P, Draisma HH, Haller T, Rawal R, Vaarhorst A, Kangas AJ, Lyytikäinen LP, Pirinen M, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun. 2016; 7:11122. PMID:
27005778.
Article
28. Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, Boxall R, Guo Y, Xu X, Bian Z, Hu R, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 2018; 71:620–632. PMID:
29420958.
Article
29. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011; 43:1575–1581. PMID:
21681120.
30. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, Bandera EV, Hamilton KK, Grant B, McCullough M, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012; 62:243–274. PMID:
22539238.
Article
31. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20:53–65.
Article
32. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9:2579–2605.
33. Breiman L. Random forests. Mach Learn. 2001; 45:5–32.
34. Hubert L, Arabie P. Comparing partitions. J Classif. 1985; 2:193–218.
Article
35. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986; 124:17–27. PMID:
3521261.
Article
36. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. New York (NY): Springer;2013. p. 523.
37. Magkos F, Mohammed BS, Mittendorfer B. Effect of obesity on the plasma lipoprotein subclass profile in normoglycemic and normolipidemic men and women. Int J Obes. 2008; 32:1655–1664.
Article
38. Bogl LH, Kaye SM, Rämö JT, Kangas AJ, Soininen P, Hakkarainen A, Lundbom J, Lundbom N, Ortega-Alonso A, Rissanen A, et al. Abdominal obesity and circulating metabolites: a twin study approach. Metabolism. 2016; 65:111–121. PMID:
26892522.
Article
39. Kashkooli S, Choghakhori R, Hasanvand A, Abbasnezhad A. Effect of calcium and vitamin D co-supplementation on lipid profile of overweight/obese subjects: a systematic review and meta-analysis of the randomized clinical trials. Obes Med. 2019; 15:100124.
40. O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011; 93:314–321. PMID:
21177801.
Article
41. Schmidt JA, Rinaldi S, Ferrari P, Carayol M, Achaintre D, Scalbert A, Cross AJ, Gunter MJ, Fensom GK, Appleby PN, et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am J Clin Nutr. 2015; 102:1518–1526. PMID:
26511225.
Article
42. Gibbons H, Carr E, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, Brennan L. Metabolomic-based identification of clusters that reflect dietary patterns. Mol Nutr Food Res. 2017; 61:1601050.
Article
43. Lindqvist HM, Rådjursöga M, Malmodin D, Winkvist A, Ellegård L. Serum metabolite profiles of habitual diet: evaluation by 1H-nuclear magnetic resonance analysis. Am J Clin Nutr. 2019; 110:53–62. PMID:
31127814.
Article
44. Navarro SL, Tarkhan A, Shojaie A, Randolph TW, Gu H, Djukovic D, Osterbauer KJ, Hullar MA, Kratz M, Neuhouser ML, et al. Plasma metabolomics profiles suggest beneficial effects of a low-glycemic load dietary pattern on inflammation and energy metabolism. Am J Clin Nutr. 2019; 110:984–992. PMID:
31432072.
Article
45. Walker ME, Song RJ, Xu X, Gerszten RE, Ngo D, Clish CB, Corlin L, Ma J, Xanthakis V, Jacques PF, et al. Proteomic and metabolomic correlates of healthy dietary patterns: the Framingham Heart Study. Nutrients. 2020; 12:1476. PMID:
32438708.
Article
46. Wu Y, Li S, Wang W, Zhang D. Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int J Food Sci Nutr. 2020; 71:738–749. PMID:
31986943.
Article
47. Azadbakht L, Esmaillzadeh A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J Nutr. 2009; 139:335–339. PMID:
19074209.
Article
48. Tikkanen E, Kanerva N, Aittomaki V, Männistö S, Salomaa VV, Wurtz P. Fasting samples are not required for NMR metabolic profiling studies of cardiovascular disease risk: prospective data for 4,400 individuals profiled few weeks apart. Circulation. 2019; 140:A10212.