Blood Res.  2025;60:19. 10.1007/s44313-025-00067-5.

Seroprevalence of SARS‑CoV‑2 antibodies in patients with hematological and oncological diseases in early 2024

Affiliations
  • 1University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
  • 2University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
  • 3German Centre for Infection Research (DZIF), Partner Site Bonn‑Cologne, Cologne, Germany
  • 4University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
  • 5University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Virology, Cologne, NRW, Germany

Abstract

Introduction
COVID-19 remains a major threat to immunocompromised individuals. The determination of circulat‑ ing SARS-CoV-2 antibodies in patients at high risk for severe course of SARS-CoV-2 infection is important for estimat‑ ing the vaccine-induced humoral immune response. Therefore, we assessed the status quo after winter to analyze the need for booster vaccinations.
Methods
Anti-spike IgG levels of 46 hospitalized patients with hematological and oncological diseases, measured between 21th December 2023 and 8th February 2024, were compared between subgroups of patients. Demographic data, underlying diseases, antineoplastic treatment, and the number of positive SARS-CoV-2 tests at the University Hospital Cologne were collected.
Results
Patients with different diseases showed varying SARS-CoV-2 spike antibody levels. The highest levels were found in patients with diffuse large cell B-cell lymphoma (DLBCL) and acute leukemia who had not received specific treatment or had just initiated treatment, whereas the lowest levels were found in patients with DLBCL, acute leuke‑ mia, and multiple myeloma who had received at least one line of treatment. The geometric mean antibody titers were higher in female patients than in male patients and were highest in patients aged 41–50 years while lowest in those aged 61–70 years.
Conclusion
The data presented confirm broad variations in SARS-CoV-2 anti-spike IgG levels across patients with dif‑ ferent hematological and oncological diseases and highlight the complex interference of cancer biology, immune dysfunction, and treatment-related factors in shaping immune responses. Further research is needed to elucidate the mechanisms underlying these variations in antibody levels. We emphasize the need for regular booster vaccina‑ tions in this patient group.

Keyword

COVID-19; SARS-CoV-2; Vaccination; Immunocompromised patients; Communicable disease; Seroprevalence

Figure

  • Fig. 1 SARS-CoV-2 antibody titers in different groups of patients with hematological and oncological diseases – Scatter Plot (a) and box plot (b)

  • Fig. 2 Comparison of SARS-CoV-2 antibody titers depending on treatment status

  • Fig. 3 Comparison of SARS-CoV-2 antibody titers a) sex b) age

  • Fig. 4 SARS-CoV-2 test results at University Hospital Cologne between December 2023 and February 2024


Reference

References

1. Piechotta V, Mellinghoff SC, Hirsch C, Brinkmann A, Iannizzi C, Kreuzberger N, et al. Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: a systematic review. Blood Cancer J. 2022; 12(5):86. PMID: 35641489. PMCID: 9152308. DOI: 10.1038/s41408-022-00684-8.
2. Giesen N, Busch E, Schalk E, Beutel G, Rüthrich MM, Hentrich M, et al. AGIHO guideline on evidence-based management of COVID-19 in cancer patients: 2022 update on vaccination, pharmacological prophylaxis and therapy in light of the omicron variants. European journal of cancer (Oxford, England : 1990). 2023;181:102–18.
3. Pagano L, Salmanton-García J, Marchesi F, Blennow O, Gomes da Silva M, Glenthøj A, et al. Breakthrough COVID-19 in vaccinated patients with hematologic malignancies: results from the EPICOVIDEHA survey. Blood. 2022;140(26):2773–87.
4. Pagano L, Salmanton-García J, Marchesi F, Busca A, Corradini P, Hoenigl M, et al. COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA). J Hematol Oncol. 2021; 14(1):168. PMID: 34649563. PMCID: 8515781. DOI: 10.1186/s13045-021-01177-0.
5. Cheng HL, Lim SM, Jia H, Chen MW, Ng SY, Gao X, et al. Rapid Evaluation of Vaccine Booster Effectiveness against SARS-CoV-2 Variants. Microbiology Spectrum. 2022; 10(5):e02257–e2322. PMID: 36069616. PMCID: 9602425. DOI: 10.1128/spectrum.02257-22.
6. Park HJ, Gonsalves GS, Tan ST, Kelly JD, Rutherford GW, Wachter RM, et al. Comparing frequency of booster vaccination to prevent severe COVID-19 by risk group in the United States. Nat Commun. 2024; 15(1):1883. PMID: 38448400. PMCID: 10917753. DOI: 10.1038/s41467-024-45549-9.
7. Pagano L, Salmanton-García J, Marchesi F, López-García A, Lamure S, Itri F, et al. COVID-19 in vaccinated adult patients with hematological malignancies: preliminary results from EPICOVIDEHA. Blood. 2022; 139(10):1588–1592. PMID: 34748627. PMCID: 8577877. DOI: 10.1182/blood.2021014124.
8. Gilbert PB, Donis RO, Koup RA, Fong Y, Plotkin SA, Follmann D. A Covid-19 Milestone Attained - A Correlate of Protection for Vaccines. N Engl J Med. 2022; 387(24):2203–2206. PMID: 36507702. DOI: 10.1056/NEJMp2211314.
9. Krammer F. A correlate of protection for SARS-CoV-2 vaccines is urgently needed. Nat Med. 2021; 27(7):1147–1148. PMID: 34239135. DOI: 10.1038/s41591-021-01432-4.
10. Vikström L, Fjällström P, Gwon YD, Sheward DJ, Wigren-Byström J, Evander M, et al. Vaccine-induced correlate of protection against fatal COVID-19 in older and frail adults during waves of neutralization-resistant variants of concern: an observational study. Lancet Reg Health Eur. 2023; 30:100646. PMID: 37363799. PMCID: 10163377. DOI: 10.1016/j.lanepe.2023.100646.
11. Dewald F, Pirkl M, Paluschinski M, Kühn J, Elsner C, Schulte B, et al. Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients. Nat Commun. 2023; 14(1):2835. PMID: 37208323. PMCID: 10199003. DOI: 10.1038/s41467-023-38127-y.
12. Jensen A, Stromme M, Moyassari S, Chadha AS, Tartaglia MC, Szoeke C, et al. COVID-19 vaccines: Considering sex differences in efficacy and safety. Contemp Clin Trials. 2022; 115:106700. PMID: 35149232. PMCID: 8824304. DOI: 10.1016/j.cct.2022.106700.
13. Fischinger S, Boudreau CM, Butler AL, Streeck H, Alter G. Sex differences in vaccine-induced humoral immunity. Seminars in Immunopathology. 2019; 41(2):239–249. PMID: 30547182. DOI: 10.1007/s00281-018-0726-5.
14. Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, et al. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. Vaccines. 2024; 9(1):77. PMID: 38600250. PMCID: 11006855.
15. Shen Y, Freeman JA, Holland J, Naidu K, Solterbeck A, Van Bilsen N, et al. Multiple COVID-19 vaccine doses in CLL and MBL improve immune responses with progressive and high seroconversion. Blood. 2022; 140(25):2709–2721. PMID: 36206503. DOI: 10.1182/blood.2022017814.
16. Mellinghoff SC, Robrecht S, Sprute R, Mayer L, Weskamm LM, Dahlke C, et al. Hybrid immunity to SARS-CoV-2 in patients with chronic lymphocytic leukemia. Eur J Haematol. 2024; 112(5):788–793. PMID: 38311570. DOI: 10.1111/ejh.14170.
17. https://doi.org/10.2196/60675.
18. Koch J PV, Berner R, Bogdan C, Burchard G,, Heininger U HE, von Kries R, Ledig T,, Littmann M MJ, Mertens T, Röbl-Mathieu M,, van der Sande M SLE, Terhardt M, Überla K,, Vygen-Bonnet S WO, Wicker S, Wiedermann-, Schmidt U WG, Zepp F. Empfehlung der STIKO zur Implementierung der COVID-19-Impfung in die Empfehlungen der STIKO 2023 und die dazugehörige wissenschaftliche Begründung. Epid Bull. 2023(21:7–48).
19. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile.
20. Rüthrich MM, Giesen N, Mellinghoff SC, Rieger CT, von Lilienfeld-Toal M. Cellular Immune Response after Vaccination in Patients with Cancer-Review on Past and Present Experiences. Vaccines (Basel). 2022;10(2):182.
21. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022; 23(2):186–193. PMID: 35105982. DOI: 10.1038/s41590-021-01122-w.
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr