Anat Cell Biol.  2025 Mar;58(1):44-53. 10.5115/acb.24.210.

Papillary muscles: morphological differences and their clinical correlations

Affiliations
  • 1Department of Anatomy, All India Institute of Medical Sciences Rajkot, Rajkot, India
  • 2Department of Anatomy, Maharishi Markandeshwar Institute of Medical Sciences & Research, Ambala, India
  • 3Department of Forensic Medicine, Lady Hardinge Medical College, New Delhi, India
  • 4Department of Anatomy, Lady Hardinge Medical College, New Delhi, India
  • 5Department of Anatomy, Faculty of Medicine and Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, India

Abstract

The complex architecture of the papillary muscles (PMs) of the ventricles plays a crucial role in cardiac function and pathology. This comparative study aimed to examine the differences in PMs morphology between the right and left ventricles, focusing on their number, location, and shape. A total of 38 grossly normal hearts from donated bodies were dissected, and the number, location, and shape of PMs in both ventricles were observed. In this study, the left ventricle predominantly exhibited a single PM with 71.05% on the sternocostal surface and 57.89% on the diaphragmatic surface. The right ventricle showed a higher prevalence of single PM, at 89.47% on the sternocostal surface and 63.16% on the diaphragmatic surface. Broad-based shape of the PM emerged as the predominant variant, constituting 55.26% and 44.73% on the sternocostal and diaphragmatic surfaces of the left ventricle, respectively. In contrast, conical-shaped PM predominated in the right ventricle. Unique findings included “H” and “b” shaped muscles, conjoint PMs were observed exclusively in the left ventricle, and small papillary projections with direct tendinous cord attachment in the right ventricle. A distinct webbed shaped configuration of PM was exclusively observed in the right ventricle in only one specimen. No significant difference (P=0.84) was noted in muscle bellies between ventricular surfaces. This study emphasizes the complexity and variability in PM morphology, highlighting the importance of a thorough understanding of these structures for cardiothoracic surgeons, radiologists, and cardiologists to enhance interventional techniques.

Keyword

Papillary muscles; Myocardial diseases; Chordae tendinae; Mitral valve; Tricuspid valve

Figure

  • Fig. 1 Types of papillary muscles based on their shapes at the base and apex (image credit: Dr. Neha Xalxo). a, apex; b, base.

  • Fig. 2 Different types of shapes of papillary muscles in the left ventricle. (A, B) Type I: broad base with broad apex. (C) Type III: broad based with trifid and multifid apex. (D) Type IV: “H” shaped, two papillary muscles interconnected with transverse band.

  • Fig. 3 Different types of shapes of papillary muscles in the left ventricle. (A) Type I: broad base with broad apex. (B) Type V: “b” shaped papillary muscle. (C) Conjoint type. a, conjoint type of papillary muscles.

  • Fig. 4 Different types of shapes of papillary muscles in the right ventricle. (A) Type VII: bifurcated based, base is perforated; Type VIII: conical, broad base with conical apex. (B) ‘a’ webbed shaped papillary muscle. Septomarginal band (*). (C) Type X, small papillary projections; ‘b’ direct attachment of chordae tendinae to ventricle wall. (D) ‘b’ direct attachment of chordae tendinae to ventricle wall. a, webbed shaped; b, the chordae tendineae attach directly to the ventricular wall.

  • Fig. 5 Different types of shapes of papillary muscles in the right ventricle. (A) Type VIII: conical, broad base with conical apex and Type IX: long cylindrical. (B) Type VI: small broad based. (C) Type X: small papillary projections. (D) Type VIII: broad base with conical apex.


Reference

References

1. Standring S. Gray's anatomy: the anatomical basis of clinical practice. 42nd ed. Elsevier;2020.
2. Saha A, Roy S. 2018; Papillary muscles of right ventricle-morphological variations and its clinical relevance. Cardiovasc Pathol. 34:22–7. DOI: 10.1016/j.carpath.2018.01.007. PMID: 29525728.
Article
3. Gunnal SA, Wabale RN, Farooqui MS. 2015; Morphological study of chordae tendinae in human cadaveric hearts. Heart Views. 16:1–12. DOI: 10.4103/1995-705X.152994. PMID: 25838872. PMCID: PMC4379635.
Article
4. Wenink AC. 1977; The medial papillary complex. Br Heart J. 39:1012–8. DOI: 10.1136/hrt.39.9.1012. PMID: 907765. PMCID: PMC483361.
Article
5. Saha A, Roy S. 2018; Papillary muscles of left ventricle-morphological variations and it's clinical relevance. Indian Heart J. 70:894–900. DOI: 10.1016/j.ihj.2017.12.003. PMID: 30580862. PMCID: PMC6306352.
Article
6. Ranganathan N, Burch GE. 1969; Gross morphology and arterial supply of the papillary muscles of the left ventricle of man. Am Heart J. 77:506–16. DOI: 10.1016/0002-8703(69)90160-4. PMID: 5775669.
Article
7. Axel L. 2004; Papillary muscles do not attach directly to the solid heart wall. Circulation. 109:3145–8. DOI: 10.1161/01.CIR.0000134276.06719.F3. PMID: 15197146.
Article
8. Roberts WC, Cohen LS. 1972; Left ventricular papillary muscles. Description of the normal and a survey of conditions causing them to be abnormal. Circulation. 46:138–54. DOI: 10.1161/01.CIR.46.1.138. PMID: 5039816.
9. Voci P, Bilotta F, Caretta Q, Mercanti C, Marino B. 1995; Papillary muscle perfusion pattern. A hypothesis for ischemic papillary muscle dysfunction. Circulation. 91:1714–8. DOI: 10.1161/01.CIR.91.6.1714. PMID: 7882478.
10. Jayawardena S, Renteria AS, Burzyantseva O, Lokesh G, Thelusmond L. 2008; Anterolateral papillary muscle rupture caused by myocardial infarction: a case report. Cases J. 1:172. DOI: 10.1186/1757-1626-1-172. PMID: 18803861. PMCID: PMC2556996.
Article
11. Oosthoek PW, Wenink AC, Wisse LJ, Gittenberger-de Groot AC. 1998; Development of the papillary muscles of the mitral valve: morphogenetic background of parachute-like asymmetric mitral valves and other mitral valve anomalies. J Thorac Cardiovasc Surg. 116:36–46. DOI: 10.1016/S0022-5223(98)70240-5. PMID: 9671895.
Article
12. Sealy WC. 1994; Surgical anatomy of accessory connections of atrioventricular conduction. Ann Thorac Surg. 57:1675–83. DOI: 10.1016/0003-4975(94)90162-7. PMID: 8010830.
Article
13. Hofsteen P, Robitaille AM, Chapman DP, Moon RT, Murry CE. 2016; Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling. Proc Natl Acad Sci U S A. 113:1002–7. DOI: 10.1073/pnas.1523930113. PMID: 26755607. PMCID: PMC4743825.
Article
14. Towbin JA, Lorts A, Jefferies JL. 2015; Left ventricular non-compaction cardiomyopathy. Lancet. 386:813–25. DOI: 10.1016/S0140-6736(14)61282-4. PMID: 25865865.
Article
15. Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. 2000; Developmental patterning of the myocardium. Anat Rec. 258:319–37. DOI: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O.
Article
16. Korabathina R, Chiu K, van Gelder HM, Labovitz A. 2017; Anomalous papillary muscle insertion causing dynamic left ventricular outflow tract obstruction without hypertrophic obstructive cardiomyopathy. Case Rep Cardiol. 2017:9878049. DOI: 10.1155/2017/9878049. PMID: 28589043. PMCID: PMC5447279.
Article
17. Rajiah P, Fulton NL, Bolen M. 2019; Magnetic resonance imaging of the papillary muscles of the left ventricle: normal anatomy, variants, and abnormalities. Insights Imaging. 10:83. DOI: 10.1186/s13244-019-0761-3. PMID: 31428880. PMCID: PMC6702502.
Article
18. El Sabbagh A, Reddy YNV, Nishimura RA. 2018; Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions. JACC Cardiovasc Imaging. 11:628–43. DOI: 10.1016/j.jcmg.2018.01.009. PMID: 29622181.
19. Mollet NR, Dymarkowski S, Volders W, Wathiong J, Herbots L, Rademakers FE, Bogaert J. 2002; Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation. 106:2873–6. DOI: 10.1161/01.CIR.0000044389.51236.91. PMID: 12460863.
Article
20. Nabzdyk CS, Tabrizi MB. 2019; In-hospital diagnosis of tricuspid papillary muscle rupture in an asymptomatic patient after blunt chest trauma. Case Rep Crit Care. 2019:1890640. DOI: 10.1155/2019/1890640. PMID: 31210992. PMCID: PMC6532299.
Article
21. Hazan E, Guzeloglu M, Sariosmanoglu N, Ugurlu B, Keskin V, Unal N. 2009; Repair of isolated mitral papillary muscle rupture consequent to blunt trauma in a small child. Tex Heart Inst J. 36:252–4.
22. Leja MJ, Shah DJ, Reardon MJ. 2011; Primary cardiac tumors. Tex Heart Inst J. 38:261–2.
23. Rivera S, Vecchio N, Ricapito P. 2019; Anatomical connections between the papillary muscles and the ventricular myocardium: correlation with QRS variability of ventricular arrhythmias. Circ Arrhythm Electrophysiol. 12:e007004. DOI: 10.1161/CIRCEP.118.007004. PMID: 30636476.
Article
24. Lu Y, James TN, Bootsma M, Terasaki F. 1993; Histological organization of the right and left atrioventricular valves of the chicken heart and their relationship to the atrioventricular Purkinje ring and the middle bundle branch. Anat Rec. 235:74–86. DOI: 10.1002/ar.1092350108. PMID: 8417630.
Article
25. Harrigan CJ, Appelbaum E, Maron BJ, Buros JL, Gibson CM, Lesser JR, Udelson JE, Manning WJ, Maron MS. 2008; Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 101:668–73. DOI: 10.1016/j.amjcard.2007.10.032. PMID: 18308018.
Article
26. Gruner C, Chan RH, Crean A, Rakowski H, Rowin EJ, Care M, Deva D, Williams L, Appelbaum E, Gibson CM, Lesser JR, Haas TS, Udelson JE, Manning WJ, Siminovitch K, Ralph-Edwards AC, Rastegar H, Maron BJ, Maron MS. 2014; Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur Heart J. 35:2706–13. DOI: 10.1093/eurheartj/ehu154. PMID: 24810389.
Article
27. Victor S, Nayak VM. 1995; Variations in the papillary muscles of the normal mitral valve and their surgical relevance. J Card Surg. 10:597–607. DOI: 10.1111/j.1540-8191.1995.tb00642.x. PMID: 7488788.
Article
28. Bhadoria P, Bisht K, Singh B, Tiwari V. 2022; Cadaveric study on the morphology and morphometry of heart papillary muscles. Cureus. 14:e22722. DOI: 10.7759/cureus.22722.
Article
29. Gheorghitescu R, Toba M, Iliescu DM, Bordei P. 2016; Anatomical consideration of the number and form of the papillary muscle in the left ventricle. ARS Medica Tomitana. 2:119–27. DOI: 10.1515/arsm-2016-0021.
Article
30. Chiechi MA, Lees WM, Thompson R. 1956; Functional anatomy of the normal mitral valve. J Thorac Surg. 32:378–98. DOI: 10.1016/S0096-5588(20)30404-9. PMID: 13358125.
Article
31. Valli S, Gohila G. 2021; Study of anatomical variations of mitral papillary muscles and their significance: a cadaveric study from Southern India. Int J Anat Radiol Surg. 10:AO30–3. DOI: 10.7860/IJARS/2021/49687:2701.
Article
32. Kavimani M, Johnson WMS, Jebakani CF. 2011; Morphology of mitral papillary muscles -the bridges of vital link across the heart muscles. National J Basic Med Sci. 2:18–22.
33. Hosapatna M, Souza A, Das M, Supriya S, Ankolekar V, Souza AS. 2014; Morphology of papillary muscles in human adults: a cadaveric study. Ibnosian J Med Biomed Sic. 6:168–72. DOI: 10.4103/1947-489X.210379.
Article
34. Priya P, Rajila HS, Aruna S, Karunagaran B, Veerappan V. 2014; Study on variations in the anterior papillary muscle of the right ventricle. Int J Innov Res Dev. 3:416–9.
35. Doty DB, Acar C. 1998; Mitral valve replacement with homograft. Ann Thorac Surg. 66:2127–31. DOI: 10.1016/S0003-4975(98)01089-3. PMID: 9930518.
Article
36. Aktas EO, Govsa F, Kocak A, Boydak B, Yavuz IC. 2004; Variations in the papillary muscles of normal tricuspid valve and their clinical relevance in medicolegal autopsies. Saudi Med J. 25:1176–85.
37. Lazzari JO, Fachinat A, Tambussi A. 1990; Clinical assessment of the right ventricle anterior papillary muscle extrasystoles with Holter recordings. Pacing Clin Electrophysiol. 13:275–84. DOI: 10.1111/j.1540-8159.1990.tb02041.x. PMID: 1690400.
Article
38. Ker J. 2010; Right ventricular variants and pulmonary embolism: association or coincidence? Clin Med Insights Cardiol. 4:53–7. DOI: 10.4137/CMC.S5244. PMID: 20859527. PMCID: PMC2941134.
39. Nuzhdin DM, Komarov NR, Bolsunovsky AV. Fukushima N, editor. Contemporary approach with mitral valve allograft in the treatment of tricuspid valve pathology. Recent scientific and therapeoutic advances in allograft. IntechOpen;2023. DOI: 10.5772/intechopen.111687.
40. Nomura T, Harada Y, Suzaki Y, Hayashi H, Tanaka H, Shiraishi J, Komatsu S, Hosomi Y, Hirano S, Yaku H, Kitamura N. 2004; Left ventricular outflow tract obstruction due to anomalous insertion of papillary muscle. Circ J. 68:1219–22. DOI: 10.1253/circj.68.1219. PMID: 15564711.
Article
41. Costa MACD, Wippich AC. 2018; Correction of left ventricular outflow tract obstruction caused by anomalous papillary muscle and subaortic membrane. Braz J Cardiovasc Surg. 33:634–7. DOI: 10.21470/1678-9741-2017-0046.
Article
42. Bryant R 3rd, Smedira NG. 2008; Papillary muscle realignment for symptomatic left ventricular outflow tract obstruction. J Thorac Cardiovasc Surg. 135:223–4. DOI: 10.1016/j.jtcvs.2007.08.034. PMID: 18179954.
Article
43. Kwon DH, Setser RM, Thamilarasan M, Popovic ZV, Smedira NG, Schoenhagen P, Garcia MJ, Lever HM, Desai MY. 2008; Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 94:1295–301. DOI: 10.1136/hrt.2007.118018. PMID: 17690158.
Article
44. Maron BJ, Nishimura RA, Danielson GK. 1998; Pitfalls in clinical recognition and a novel operative approach for hypertrophic cardiomyopathy with severe outflow obstruction due to anomalous papillary muscle. Circulation. 98:2505–8. DOI: 10.1161/01.CIR.98.23.2505. PMID: 9843454.
Article
45. Ker J. 2010; Bigeminy and the bifid papillary muscle. Cardiovasc Ultrasound. 8:13. DOI: 10.1186/1476-7120-8-13. PMID: 20409312. PMCID: PMC2867800.
Article
46. O'Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Cury RC, Dodd JD. 2009; Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances. AJR Am J Roentgenol. 193:377–87. DOI: 10.2214/AJR.08.1895. PMID: 19620434.
47. Ho SY. 2002; Anatomy of the mitral valve. Heart. 88 Suppl 4:iv5–10. DOI: 10.1136/heart.88.suppl_4.iv5. PMID: 12369589. PMCID: PMC1876279.
Article
48. Krawczyk-Ożóg A, Hołda MK, Bolechała F, Siudak Z, Sorysz D, Dudek D, Klimek-Piotrowska W. 2018; Anatomy of the mitral subvalvular apparatus. J Thorac Cardiovasc Surg. 155:2002–10. DOI: 10.1016/j.jtcvs.2017.12.061. PMID: 29397976.
Article
49. Bose P, Singh R, more R, Pandey SK, Jain D. 2015; Morphological variations of papillary muscles in North Indians: a cadaveric study. J Anat Sci. 23:1–5.
50. Sinha MB, Somkuwar SK, Kumar D, Sharma DK. 2020; Anatomical variations of papillary muscles in human cadaveric hearts of Chhattisgarh, India. Indian J Clin Anat Physiol. 7:374–80. DOI: 10.18231/j.ijcap.2020.078.
Article
51. Nigri GR, Di Dio LJA, Baptista CAC. 2001; Papillary muscles and tendinous cords of the right ventricle of the human heart morphological characteristics. Surg Radiol Anat. 23:45–9. DOI: 10.1007/s00276-001-0045-7. PMID: 11370142.
Article
52. Kumar S, Singh AK, Tamang BK. 2015; A morphological and morphometric study of right ventricular papillary muscles in North Indian region. Natl J Integr Res Med. 6:52–5.
53. Begum JA, Khalil M, Rahman H, Adiluzzaman AA. 2006; A morphological and morphometric study of the right ventricular papillary muscles of autopsied heart of Bangladeshi people. Mymensingh Med J. 15:131–4. DOI: 10.3329/mmj.v15i2.30. PMID: 16878091.
54. Lee JY, Hur MS. 2019; Morphological classification of the moderator band and its relationship with the anterior papillary muscle. Anat Cell Biol. 52:38–42. DOI: 10.5115/acb.2019.52.1.38. PMID: 30984450. PMCID: PMC6449581.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr