1. Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, et al. 2004; The DNA sequence and comparative analysis of human chromosome 5. Nature. 431:268–74. DOI:
10.1038/nature02919. PMID:
15372022.
2. Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, et al. 2003; Human chromosome 7: DNA sequence and biology. Science. 300:767–72. DOI:
10.1126/science.1083423. PMID:
12690205. PMCID:
PMC2882961.
3. Mrózek K, Heinonen K, Bloomfield CD. 2001; Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol. 14:19–47. DOI:
10.1053/beha.2000.0114. PMID:
11355922.
Article
4. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. 2022; Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 140:1345–77. DOI:
10.1182/blood.2022016867. PMID:
35797463.
Article
5. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. 2022; The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–19. DOI:
10.1038/s41375-022-01613-1. PMID:
35732831. PMCID:
PMC9252913.
Article
7. Van den Berghe H, Cassiman JJ, David G, Fryns JP, Michaux JL, Sokal G. 1974; Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature. 251:437–8. DOI:
10.1038/251437a0. PMID:
4421285.
Article
9. Lai F, Godley LA, Joslin J, Fernald AA, Liu J, Espinosa R 3rd, et al. 2001; Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics. 71:235–45. DOI:
10.1006/geno.2000.6414. PMID:
11161817.
Article
10. Barlow JL, Drynan LF, Trim NL, Erber WN, Warren AJ, McKenzie AN. 2010; New insights into 5q- syndrome as a ribosomopathy. Cell Cycle. 9:4286–93. DOI:
10.4161/cc.9.21.13742. PMID:
20980806.
Article
11. Mori M, Kubota Y, Durmaz A, Gurnari C, Goodings C, Adema V, et al. 2023; Genomics of deletion 7 and 7q in myeloid neoplasm: from pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia. 37:2082–93. DOI:
10.1038/s41375-023-02003-x. PMID:
37634012. PMCID:
PMC10539177.
Article
12. Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L, et al. 2002; Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood. 99:4638–41. DOI:
10.1182/blood.V99.12.4638. PMID:
12036901.
Article
13. Wang L, Fidler C, Nadig N, Giagounidis A, Della Porta MG, Malcovati L, et al. 2008; Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays. Haematologica. 93:994–1000. DOI:
10.3324/haematol.12603. PMID:
18508791. PMID:
07260042ef0242998c48c27475d46dfb.
Article
14. Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, et al. 2012; Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol. 30:1343–9. DOI:
10.1200/JCO.2011.36.1824. PMID:
22370328. PMCID:
PMC3341146.
Article
15. Volkert S, Kohlmann A, Schnittger S, Kern W, Haferlach T, Haferlach C. 2014; Association of the type of 5q loss with complex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer. 53:402–10. DOI:
10.1002/gcc.22151. PMID:
24493299.
16. Stengel A, Kern W, Haferlach T, Meggendorfer M, Haferlach C. 2016; The 5q deletion size in myeloid malignancies is correlated to additional chromosomal aberrations and to TP53 mutations. Genes Chromosomes Cancer. 55:777–85. DOI:
10.1002/gcc.22377. PMID:
27218649.
17. Jasek M, Gondek LP, Bejanyan N, Tiu R, Huh J, Theil KS, et al. 2010; TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p. Leukemia. 24:216–9. DOI:
10.1038/leu.2009.189. PMID:
19759556. PMCID:
PMC2806506.
Article
19. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. 2006; The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 13:115–24. DOI:
10.1038/sj.cgt.7700896. PMID:
16138117. PMCID:
PMC2455793.
Article
20. Krones-Herzig A, Adamson E, Mercola D. 2003; Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proc Natl Acad Sci U S A. 100:3233–8. DOI:
10.1073/pnas.2628034100. PMID:
12629205. PMCID:
PMC152275.
Article
21. Joslin JM, Fernald AA, Tennant TR, Davis EM, Kogan SC, Anastasi J, et al. 2007; Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood. 110:719–26. DOI:
10.1182/blood-2007-01-068809. PMID:
17420284. PMCID:
PMC1924479.
Article
24. Das-Gupta EP, Seedhouse CH, Russell NH. 2001; Microsatellite instability occurs in defined subsets of patients with acute myeloblastic leukaemia. Br J Haematol. 114:307–12. DOI:
10.1046/j.1365-2141.2001.02920.x. PMID:
11529848.
Article
25. Zhu YM, Das-Gupta EP, Russell NH. 1999; Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood. 94:733–40. DOI:
10.1182/blood.V94.2.733. PMID:
10397740.
Article
26. Grisendi S, Mecucci C, Falini B, Pandolfi PP. 2006; Nucleophosmin and cancer. Nat Rev Cancer. 6:493–505. DOI:
10.1038/nrc1885. PMID:
16794633.
Article
27. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. 2005; Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 352:254–66. DOI:
10.1056/NEJMoa041974. PMID:
15659725.
Article
28. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. 2014; Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 28:241–7. DOI:
10.1038/leu.2013.336. PMID:
24220272. PMCID:
PMC3918868.
Article
29. Nazha A, Bejar R. 2017; Molecular Data and the IPSS-R: how mutational burden can affect prognostication in MDS. Curr Hematol Malig Rep. 12:461–7. DOI:
10.1007/s11899-017-0407-9. PMID:
28844082.
Article
30. Di Matteo A, Franceschini M, Chiarella S, Rocchio S, Travaglini-Allocatelli C, Federici L. 2016; Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget. 7:44821–40. DOI:
10.18632/oncotarget.8599. PMID:
27058426. PMCID:
PMC5190137.
Article
31. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A, et al. 2008; Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood. 111:3859–62. DOI:
10.1182/blood-2007-06-098251. PMID:
18212245. PMCID:
PMC2275037.
Article
33. Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B, et al. 2012; Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood. 119:6109–17. DOI:
10.1182/blood-2011-12-397620. PMID:
22553315. PMCID:
PMC3383019.
Article
34. Simon JA, Kingston RE. 2009; Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 10:697–708. DOI:
10.1038/nrm2763. PMID:
19738629.
Article
35. Jiang L, Ye L, Ma L, Ren Y, Zhou X, Mei C, et al. 2022; Predictive values of mutational variant allele frequency in overall survival and leukemic progression of myelodysplastic syndromes. J Cancer Res Clin Oncol. 148:845–56. DOI:
10.1007/s00432-021-03905-y. PMID:
35013795.
Article
36. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, et al. 2012; A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26:651–6. DOI:
10.1101/gad.186411.111. PMID:
22431509. PMCID:
PMC3323876.
37. Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, et al. 2014; Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 5:4177. DOI:
10.1038/ncomms5177. PMID:
24953053.
Article
38. Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, et al. 2001; Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood. 98:3658–67. DOI:
10.1182/blood.V98.13.3658. PMID:
11739170.
Article
40. Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, et al. 2013; Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 24:305–17. DOI:
10.1016/j.ccr.2013.08.011. PMID:
24029230.
Article
43. Hinai AA, Valk PJ. 2016; Review: aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 172:870–8. DOI:
10.1111/bjh.13898. PMID:
26729571.
Article
44. Cox MC, Panetta P, Venditti A, Del Poeta G, Franchi A, Buccisano F, et al. 2003; Comparison between conventional banding analysis and FISH screening with an AML-specific set of probes in 260 patients. Hematol J. 4:263–70. DOI:
10.1038/sj.thj.6200262. PMID:
12872151.
Article
45. Bishop R. 2010; Applications of fluorescence
in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Int J Stud Res. 3:85–95. DOI:
10.1093/biohorizons/hzq009.
Article
46. Sun Y, Cook JR. 2010; Fluorescence in situ hybridization for del(5q) in myelodysplasia/acute myeloid leukemia: comparison of EGR1 vs. CSF1R probes and diagnostic yield over metaphase cytogenetics alone. Leuk Res. 34:340–3. DOI:
10.1016/j.leukres.2009.05.026. PMID:
19608274.
Article
47. Galván AB, Mallo M, Arenillas L, Salido M, Espinet B, Pedro C, et al. 2010; Does monosomy 5 really exist in myelodysplastic syndromes and acute myeloid leukemia? Leuk Res. 34:1242–5. DOI:
10.1016/j.leukres.2010.03.022. PMID:
20362335.
Article
48. Zneimer SM. 2014. Cytogenetic Abnormalities: Chromosomal, FISH, and Microarray-Based Clinical Reporting and Interpretation of Result. Wiley;DOI:
10.1002/9781118412602.
49. Arif M, Tanaka K, Damodaran C, Asou H, Kyo T, Dohy H, Kamada N. 1996; Hidden monosomy 7 in acute myeloid leukemia and myelodysplastic syndrome detected by interphase fluorescence in situ hybridization. Leuk Res. 20:709–16. DOI:
10.1016/0145-2126(96)00018-5. PMID:
8947579.
Article
50. Brizard F, Brizard A, Guilhot F, Tanzer J, Berger R. 1994; Detection of monosomy 7 and trisomies 8 and 11 in myelodysplastic disorders by interphase fluorescent in situ hybridization. Comparison with acute non-lymphocytic leukemias. Leukemia. 8:1005–11. DOI:
10.1002/hon.3134/v1/review1.
53. Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, et al. 2011; Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 117:4552–60. DOI:
10.1182/blood-2010-07-295857. PMID:
21285439. PMCID:
PMC3099573.
Article
55. Abu-Shihab Y, Nicolet D, Mrózek K, Routbort M, Patel KP, Walker CJ, et al. 2023; BRAF-mutated acute myeloid leukemia (AML) represents a Distinct, Prognostically Poor subgroup enriched in myelodysplasia-related (MR-)AML. Blood. 142(S1):1575. DOI:
10.1182/blood-2023-185135.
Article
56. Pitel BA, Zuckerman EZ, Baughn LB. 2023; Mate pair sequencing: next-generation sequencing for structural variant detection. Methods Mol Biol. 2621:127–49. DOI:
10.1007/978-1-0716-2950-5_9. PMID:
37041444.
Article
57. Aypar U, Smoley SA, Pitel BA, Pearce KE, Zenka RM, Vasmatzis G, et al. 2019; Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur J Haematol. 102:87–96. DOI:
10.1111/ejh.13179. PMID:
30270457. PMCID:
PMC7379948.
Article
59. Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Smoley SA, et al. 2020; Clinical value of next generation sequencing in the detection of recurring structural rearrangements and copy number abnormalities in acute myeloid leukemia. Blood. 136(S1):21–2. DOI:
10.1182/blood-2020-139691.
Article
60. Hartmann L, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. 2019; Myeloid malignancies with isolated 7q deletion can be further characterized by their accompanying molecular mutations. Genes Chromosomes Cancer. 58:698–704. DOI:
10.1002/gcc.22761. PMID:
30994218.
Article
61. Haase D, Germing U, Schanz J, Pfeilstöcker M, Nösslinger T, Hildebrandt B, et al. 2007; New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 110:4385–95. DOI:
10.1182/blood-2007-03-082404. PMID:
17726160.
Article
63. Schanz J, Tüchler H, Solé F, Mallo M, Luno E, Cervera J, et al. 2012; New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 30:820–9. DOI:
10.1200/JCO.2011.35.6394. PMID:
22331955. PMCID:
PMC4874200.
Article
64. Kantarjian H, O'Brien S, Ravandi F, Borthakur G, Faderl S, Bueso-Ramos C, et al. 2009; The heterogeneous prognosis of patients with myelodysplastic syndrome and chromosome 5 abnormalities: how does it relate to the original lenalidomide experience in MDS? Cancer. 115:5202–9. DOI:
10.1002/cncr.24575. PMID:
19691096. PMCID:
PMC2783477.
Article
65. Garcia-Manero G, Chien KS, Montalban-Bravo G. 2020; Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol. 95:1399–420. DOI:
10.1002/ajh.25950. PMID:
32744763.
Article
67. Neuman WL, Rubin CM, Rios RB, Larson RA, Le Beau MM, Rowley JD, et al. 1992; Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood. 79:1501–10. DOI:
10.1182/blood.V79.6.1501.1501. PMID:
1347709.
Article
68. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, et al. 2008; Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 451:335–9. DOI:
10.1038/nature06494. PMID:
18202658. PMCID:
PMC3771855.
Article
69. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, et al. 2011; Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 117:2567–76. DOI:
10.1182/blood-2010-07-295238. PMID:
21068437. PMCID:
PMC3062351.
Article
70. Wei S, Chen X, McGraw K, Zhang L, Komrokji R, Clark J, et al. 2013; Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene. 32:1110–20. DOI:
10.1038/onc.2012.139. PMID:
22525275. PMCID:
PMC3751397.
Article
71. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. 2000; Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 96:4075–83. DOI:
10.1182/blood.V96.13.4075. PMID:
11110676.
Article
72. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. 2002; Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 100:4325–36. DOI:
10.1182/blood-2002-03-0772. PMID:
12393746.
Article
73. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. 2001; The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 98:1312–20. DOI:
10.1182/blood.V98.5.1312. PMID:
11520776.
Article
74. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. 1998; The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 92:2322–33. DOI:
10.1182/blood.V92.7.2322. PMID:
9746770.
75. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. 1995; Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 86:3542–52. DOI:
10.1182/blood.V86.9.3542.bloodjournal8693542. PMID:
7579462.
Article
77. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. 2003; Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 102:43–52. DOI:
10.1182/blood-2002-11-3343. PMID:
12623843.
Article
79. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. 2001; Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 19:1405–13. DOI:
10.1200/JCO.2001.19.5.1405. PMID:
11230485.
80. Koenig KL, Sahasrabudhe KD, Sigmund AM, Bhatnagar B. 2020; AML with myelodysplasia-related changes: development, challenges, and treatment advances. Genes (Basel). 11:845. DOI:
10.3390/genes11080845. PMID:
32722092. PMCID:
PMC7464320.
Article
81. Arber DA, Erba HP. 2020; Diagnosis and treatment of patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Am J Clin Pathol. 154:731–41. DOI:
10.1093/ajcp/aqaa107. PMID:
32864703. PMCID:
PMC7610263.
Article
82. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. 2016; Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–21. DOI:
10.1056/NEJMoa1516192. PMID:
27276561. PMCID:
PMC4979995.
Article
84. Mrózek K, Heinonen K, Theil KS, Bloomfield CD. 2002; Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes Cancer. 34:137–53. DOI:
10.1002/gcc.10027. PMID:
11979548.
Article
85. Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, et al. 2002; Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer. 35:20–9. DOI:
10.1002/gcc.10088. PMID:
12203786.
Article
86. Van Limbergen H, Poppe B, Michaux L, Herens C, Brown J, Noens L, et al. 2002; Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer. 33:60–72. DOI:
10.1002/gcc.1212. PMID:
11746988.
Article
87. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. 2008; Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 26:4791–7. DOI:
10.1200/JCO.2008.16.0259. PMID:
18695255.
Article
88. Kayser S, Zucknick M, Döhner K, Krauter J, Köhne CH, Horst HA, et al. 2012; Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood. 119:551–8. DOI:
10.1182/blood-2011-07-367508. PMID:
22096250.
Article
89. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. 2012; TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 119:2114–21. DOI:
10.1182/blood-2011-08-375758. PMID:
22186996.
Article
90. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. 2015; Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 518:552–5. DOI:
10.1038/nature13968. PMID:
25487151. PMCID:
PMC4403236.
Article
91. Simmons HM, Oseth L, Nguyen P, O'Leary M, Conklin KF, Hirsch B. 2002; Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia. 16:2408–16. DOI:
10.1038/sj.leu.2402773. PMID:
12454746.
Article
93. Pezeshki A, Podder S, Kamel R, Corey SJ. 2017; Monosomy 7/del (7q) in inherited bone marrow failure syndromes: a systematic review. Pediatr Blood Cancer. 64:10.1002/pbc.26714. DOI:
10.1002/pbc.26714. PMID:
28708320. PMCID:
PMC5937691.
Article
94. Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. 2021; Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 27:1806–17. DOI:
10.1038/s41591-021-01511-6. PMID:
34621053. PMCID:
PMC9330547.
95. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. 2010; Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 116:354–65. DOI:
10.1182/blood-2009-11-254441. PMID:
20385793.
Article
96. Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, et al. 2023; Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 21:503–13. DOI:
10.6004/jnccn.2023.0025. PMID:
37156478.