Ann Lab Med.  2025 Mar;45(2):133-145. 10.3343/alm.2024.0477.

Abnormalities in Chromosomes 5 and 7 in Myelodysplastic Syndrome and Acute Myeloid Leukemia

Affiliations
  • 1Haematology Department, Royal Perth Hospital, Perth, Australia
  • 2School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
  • 3PathWest Laboratory Medicine WA, Perth, Australia

Abstract

Chromosomes 5 and 7 are large chromosomes that contain close to 1,000 genes each. Deletions of the long arms or loss of the entire chromosome (monosomy) are common defects in myeloid disorders, particularly MDS and AML. Loss of material from either chromosome 5 or 7 results in haploinsufficiency of multiple genes, with some implicated in leukemogenesis. Abnormalities of one or both occur in up to 15% of MDS and AML cases and co-segregate in half of these. Generally, these chromosomal abnormalities are harbingers of adverse risk in both myeloid disorders. A notable exception is del(5q) in 5q– syndrome, a subtype of MDS. In this review, we describe the pathogenesis and genetic consequences of deletions in chromosomes 5 and 7. Furthermore, we provide an overview of current testing methodologies used in the assessment of these chromosomal defects in hematological malignancies and describe the disease associations and prognostic implications of aberrations in chromosomes 5 and 7 in both MDS and AML.

Keyword

Acute myeloid leukemia; Chromosome 5; Chromosome 7; Monosomy; Myelodysplastic syndrome

Figure

  • Fig. 1 CDRs and CCRs of chromosome 5q associated with MDS and AML. The distal CDR (CDR-1) is located at 5q33 and is associated with the deletion of RPS14 and 5q– syndrome. The proximal CDR (CDR-2) at 5q31 encompasses genes, including EGR1, CSNK1A1, and G3BP1, and is associated with aggressive MDS and AML. CRRs are shown in green. This figure was created with BioRender.com. Abbreviations: MDS, myelodysplastic syndrome; CDR, commonly deleted region; CRR, commonly retained region; RPS14, ribosomal protein S14; EGR1, early growth response 1; CSNK1A1, casein kinase 1 alpha 1; G3BP1, G3BP stress granule assembly factor 1; NPM1, nucleophosmin 1; DDX41, DEAD-box helicase 41.

  • Fig. 2 CDRs of chromosome 7q associated with MDS and AML. The CDR on chromosome 7q spans 7q21.13–7q36.3, with regions corresponding to bands 7q31.33, 7q34, and 7q35–7q36.1 deleted in the majority of cases [15]. Genes of interest in the pathogenesis of –7/del(7q) myeloid neoplasms include SAMD9/SAMD9L, CUX1, and EZH2. This figure was created with BioRender.com. Abbreviations: MDS, myelodysplastic syndrome; CDR, commonly deleted region; SAMD9/SAMD9L, sterile alpha motif domain-containing 9/sterile alpha motif domain-containing 9-like; CUX1, cut-like homeobox 1; EZH2, enhancer of zeste 2 polycomb-repressive complex 2 subunit.

  • Fig. 3 Examples of chromosome abnormalities via karyotyping and FISH. (A) Karyotype of AML with a monosomal karyotype, with losses of multiple chromosomes, including monosomy 7. (B) del(5q) in a case of AML. FISH using a dual color probe set for EGR1 (5q31) and D5S23 (5p15.2) (one orange signal for EGR1 and two green signals for D5S23). Abbreviations: EGR1, early growth response 1; D5S23, human D5S23 control region on 5p.

  • Fig. 4 Bone marrow morphology of a myelodysplastic neoplasm with low blasts and isolated del(5q). (A) Bone marrow aspirate showing a small megakaryocyte with a non-lobated eccentric nucleus (Romanowsky staining, 1,000×). (B) Section of the bone marrow trephine showing megakaryocytic hyperplasia with a predominance of characteristic small forms with hypolobated nuclei (hematoxylin and eosin staining, 400×).


Reference

References

1. Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, et al. 2004; The DNA sequence and comparative analysis of human chromosome 5. Nature. 431:268–74. DOI: 10.1038/nature02919. PMID: 15372022.
2. Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, et al. 2003; Human chromosome 7: DNA sequence and biology. Science. 300:767–72. DOI: 10.1126/science.1083423. PMID: 12690205. PMCID: PMC2882961.
3. Mrózek K, Heinonen K, Bloomfield CD. 2001; Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol. 14:19–47. DOI: 10.1053/beha.2000.0114. PMID: 11355922.
Article
4. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. 2022; Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 140:1345–77. DOI: 10.1182/blood.2022016867. PMID: 35797463.
Article
5. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. 2022; The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–19. DOI: 10.1038/s41375-022-01613-1. PMID: 35732831. PMCID: PMC9252913.
Article
6. DiNardo CD, Erba HP, Freeman SD, Wei AH. 2023; Acute myeloid leukaemia. Lancet. 401:2073–86. DOI: 10.1016/S0140-6736(23)00108-3. PMID: 37068505.
Article
7. Van den Berghe H, Cassiman JJ, David G, Fryns JP, Michaux JL, Sokal G. 1974; Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature. 251:437–8. DOI: 10.1038/251437a0. PMID: 4421285.
Article
8. Castro PD, Liang JC, Nagarajan L. 2000; Deletions of chromosome 5q13.3 and 17p loci cooperate in myeloid neoplasms. Blood. 95:2138–43. DOI: 10.1182/blood.V95.6.2138. PMID: 10706886.
Article
9. Lai F, Godley LA, Joslin J, Fernald AA, Liu J, Espinosa R 3rd, et al. 2001; Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics. 71:235–45. DOI: 10.1006/geno.2000.6414. PMID: 11161817.
Article
10. Barlow JL, Drynan LF, Trim NL, Erber WN, Warren AJ, McKenzie AN. 2010; New insights into 5q- syndrome as a ribosomopathy. Cell Cycle. 9:4286–93. DOI: 10.4161/cc.9.21.13742. PMID: 20980806.
Article
11. Mori M, Kubota Y, Durmaz A, Gurnari C, Goodings C, Adema V, et al. 2023; Genomics of deletion 7 and 7q in myeloid neoplasm: from pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia. 37:2082–93. DOI: 10.1038/s41375-023-02003-x. PMID: 37634012. PMCID: PMC10539177.
Article
12. Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L, et al. 2002; Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood. 99:4638–41. DOI: 10.1182/blood.V99.12.4638. PMID: 12036901.
Article
13. Wang L, Fidler C, Nadig N, Giagounidis A, Della Porta MG, Malcovati L, et al. 2008; Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays. Haematologica. 93:994–1000. DOI: 10.3324/haematol.12603. PMID: 18508791. PMID: 07260042ef0242998c48c27475d46dfb.
Article
14. Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, et al. 2012; Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol. 30:1343–9. DOI: 10.1200/JCO.2011.36.1824. PMID: 22370328. PMCID: PMC3341146.
Article
15. Volkert S, Kohlmann A, Schnittger S, Kern W, Haferlach T, Haferlach C. 2014; Association of the type of 5q loss with complex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer. 53:402–10. DOI: 10.1002/gcc.22151. PMID: 24493299.
16. Stengel A, Kern W, Haferlach T, Meggendorfer M, Haferlach C. 2016; The 5q deletion size in myeloid malignancies is correlated to additional chromosomal aberrations and to TP53 mutations. Genes Chromosomes Cancer. 55:777–85. DOI: 10.1002/gcc.22377. PMID: 27218649.
17. Jasek M, Gondek LP, Bejanyan N, Tiu R, Huh J, Theil KS, et al. 2010; TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p. Leukemia. 24:216–9. DOI: 10.1038/leu.2009.189. PMID: 19759556. PMCID: PMC2806506.
Article
18. Graubert TA, Payton MA, Shao J, Walgren RA, Monahan RS, Frater JL, et al. 2009; Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. PLoS One. 4:e4583. DOI: 10.1371/journal.pone.0004583. PMID: 19240791. PMCID: PMC2642994. PMID: e59b2598233e45898759f295c2ed1f3b.
Article
19. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. 2006; The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 13:115–24. DOI: 10.1038/sj.cgt.7700896. PMID: 16138117. PMCID: PMC2455793.
Article
20. Krones-Herzig A, Adamson E, Mercola D. 2003; Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proc Natl Acad Sci U S A. 100:3233–8. DOI: 10.1073/pnas.2628034100. PMID: 12629205. PMCID: PMC152275.
Article
21. Joslin JM, Fernald AA, Tennant TR, Davis EM, Kogan SC, Anastasi J, et al. 2007; Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood. 110:719–26. DOI: 10.1182/blood-2007-01-068809. PMID: 17420284. PMCID: PMC1924479.
Article
22. Hosono N, Makishima H, Mahfouz R, Przychodzen B, Yoshida K, Jerez A, et al. 2017; Recurrent genetic defects on chromosome 5q in myeloid neoplasms. Oncotarget. 8:6483–95. DOI: 10.18632/oncotarget.14130. PMID: 28031539. PMCID: PMC5351647.
Article
23. Leone G, Pagano L, Ben-Yehuda D, Voso MT. 2007; Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 92:1389–98. DOI: 10.3324/haematol.11034. PMID: 17768113. PMID: eae1b93cac734627ba73d94f13cfa994.
Article
24. Das-Gupta EP, Seedhouse CH, Russell NH. 2001; Microsatellite instability occurs in defined subsets of patients with acute myeloblastic leukaemia. Br J Haematol. 114:307–12. DOI: 10.1046/j.1365-2141.2001.02920.x. PMID: 11529848.
Article
25. Zhu YM, Das-Gupta EP, Russell NH. 1999; Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood. 94:733–40. DOI: 10.1182/blood.V94.2.733. PMID: 10397740.
Article
26. Grisendi S, Mecucci C, Falini B, Pandolfi PP. 2006; Nucleophosmin and cancer. Nat Rev Cancer. 6:493–505. DOI: 10.1038/nrc1885. PMID: 16794633.
Article
27. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. 2005; Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 352:254–66. DOI: 10.1056/NEJMoa041974. PMID: 15659725.
Article
28. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. 2014; Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 28:241–7. DOI: 10.1038/leu.2013.336. PMID: 24220272. PMCID: PMC3918868.
Article
29. Nazha A, Bejar R. 2017; Molecular Data and the IPSS-R: how mutational burden can affect prognostication in MDS. Curr Hematol Malig Rep. 12:461–7. DOI: 10.1007/s11899-017-0407-9. PMID: 28844082.
Article
30. Di Matteo A, Franceschini M, Chiarella S, Rocchio S, Travaglini-Allocatelli C, Federici L. 2016; Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget. 7:44821–40. DOI: 10.18632/oncotarget.8599. PMID: 27058426. PMCID: PMC5190137.
Article
31. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A, et al. 2008; Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood. 111:3859–62. DOI: 10.1182/blood-2007-06-098251. PMID: 18212245. PMCID: PMC2275037.
Article
32. Zarka J, Short NJ, Kanagal-Shamanna R, Issa GC. 2020; Nucleophosmin 1 mutations in acute myeloid leukemia. Genes (Basel). 11:649. DOI: 10.3390/genes11060649. PMID: 32545659. PMCID: PMC7348733.
Article
33. Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B, et al. 2012; Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood. 119:6109–17. DOI: 10.1182/blood-2011-12-397620. PMID: 22553315. PMCID: PMC3383019.
Article
34. Simon JA, Kingston RE. 2009; Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 10:697–708. DOI: 10.1038/nrm2763. PMID: 19738629.
Article
35. Jiang L, Ye L, Ma L, Ren Y, Zhou X, Mei C, et al. 2022; Predictive values of mutational variant allele frequency in overall survival and leukemic progression of myelodysplastic syndromes. J Cancer Res Clin Oncol. 148:845–56. DOI: 10.1007/s00432-021-03905-y. PMID: 35013795.
Article
36. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, et al. 2012; A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26:651–6. DOI: 10.1101/gad.186411.111. PMID: 22431509. PMCID: PMC3323876.
37. Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, et al. 2014; Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 5:4177. DOI: 10.1038/ncomms5177. PMID: 24953053.
Article
38. Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, et al. 2001; Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood. 98:3658–67. DOI: 10.1182/blood.V98.13.3658. PMID: 11739170.
Article
39. Supper E, Rudat S, Iyer V, Droop A, Wong K, Spinella JF, et al. 2021; Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia. Nat Commun. 12:2482. DOI: 10.1038/s41467-021-22750-8. PMID: 33931647. PMCID: PMC8087769. PMID: dda81ff46bb244da8bbf4aca6a147a93.
Article
40. Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, et al. 2013; Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 24:305–17. DOI: 10.1016/j.ccr.2013.08.011. PMID: 24029230.
Article
41. Schneider RK, Delwel R. 2018; Puzzling pieces of chromosome 7 loss or deletion. Blood. 131:2871–2. DOI: 10.1182/blood-2018-04-844746. PMID: 29954818.
Article
42. Pastor VB, Sahoo SS, Boklan J, Schwabe GC, Saribeyoglu E, Strahm B, et al. 2018; Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica. 103:427. DOI: 10.3324/haematol.2017.180778. PMID: 29217778. PMCID: PMC5830370. PMID: 76b79cce8e0e4cd59cccd8b0ca3182ac.
Article
43. Hinai AA, Valk PJ. 2016; Review: aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 172:870–8. DOI: 10.1111/bjh.13898. PMID: 26729571.
Article
44. Cox MC, Panetta P, Venditti A, Del Poeta G, Franchi A, Buccisano F, et al. 2003; Comparison between conventional banding analysis and FISH screening with an AML-specific set of probes in 260 patients. Hematol J. 4:263–70. DOI: 10.1038/sj.thj.6200262. PMID: 12872151.
Article
45. Bishop R. 2010; Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Int J Stud Res. 3:85–95. DOI: 10.1093/biohorizons/hzq009.
Article
46. Sun Y, Cook JR. 2010; Fluorescence in situ hybridization for del(5q) in myelodysplasia/acute myeloid leukemia: comparison of EGR1 vs. CSF1R probes and diagnostic yield over metaphase cytogenetics alone. Leuk Res. 34:340–3. DOI: 10.1016/j.leukres.2009.05.026. PMID: 19608274.
Article
47. Galván AB, Mallo M, Arenillas L, Salido M, Espinet B, Pedro C, et al. 2010; Does monosomy 5 really exist in myelodysplastic syndromes and acute myeloid leukemia? Leuk Res. 34:1242–5. DOI: 10.1016/j.leukres.2010.03.022. PMID: 20362335.
Article
48. Zneimer SM. 2014. Cytogenetic Abnormalities: Chromosomal, FISH, and Microarray-Based Clinical Reporting and Interpretation of Result. Wiley;DOI: 10.1002/9781118412602.
49. Arif M, Tanaka K, Damodaran C, Asou H, Kyo T, Dohy H, Kamada N. 1996; Hidden monosomy 7 in acute myeloid leukemia and myelodysplastic syndrome detected by interphase fluorescence in situ hybridization. Leuk Res. 20:709–16. DOI: 10.1016/0145-2126(96)00018-5. PMID: 8947579.
Article
50. Brizard F, Brizard A, Guilhot F, Tanzer J, Berger R. 1994; Detection of monosomy 7 and trisomies 8 and 11 in myelodysplastic disorders by interphase fluorescent in situ hybridization. Comparison with acute non-lymphocytic leukemias. Leukemia. 8:1005–11. DOI: 10.1002/hon.3134/v1/review1.
51. Huh J, Mun YC, Chung WS, Seong CM. 2012; Ring chromosome 5 in acute myeloid leukemia defined by whole-genome single nucleotide polymorphism array. Ann Lab Med. 32:307–11. DOI: 10.3343/alm.2012.32.4.307. PMID: 22779075. PMCID: PMC3384815.
Article
52. O'Keefe C, McDevitt MA, Maciejewski JP. 2010; Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood. 115:2731–9. DOI: 10.1182/blood-2009-10-201848. PMID: 20107230. PMCID: PMC2854422.
53. Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, et al. 2011; Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 117:4552–60. DOI: 10.1182/blood-2010-07-295857. PMID: 21285439. PMCID: PMC3099573.
Article
54. Yang F, Anekpuritanang T, Press RD. 2020; Clinical utility of next-generation sequencing in acute myeloid leukemia. Mol Diagn Ther. 24:1–13. DOI: 10.1007/s40291-019-00443-9. PMID: 31848884.
Article
55. Abu-Shihab Y, Nicolet D, Mrózek K, Routbort M, Patel KP, Walker CJ, et al. 2023; BRAF-mutated acute myeloid leukemia (AML) represents a Distinct, Prognostically Poor subgroup enriched in myelodysplasia-related (MR-)AML. Blood. 142(S1):1575. DOI: 10.1182/blood-2023-185135.
Article
56. Pitel BA, Zuckerman EZ, Baughn LB. 2023; Mate pair sequencing: next-generation sequencing for structural variant detection. Methods Mol Biol. 2621:127–49. DOI: 10.1007/978-1-0716-2950-5_9. PMID: 37041444.
Article
57. Aypar U, Smoley SA, Pitel BA, Pearce KE, Zenka RM, Vasmatzis G, et al. 2019; Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur J Haematol. 102:87–96. DOI: 10.1111/ejh.13179. PMID: 30270457. PMCID: PMC7379948.
Article
58. Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Cook JM, et al. 2021; Myeloid malignancies with 5q and 7q deletions are associated with extreme genomic complexity, biallelic TP53 variants, and very poor prognosis. Blood Cancer J. 11:18. DOI: 10.1038/s41408-021-00416-4. PMID: 33563889. PMCID: PMC7873204. PMID: 025690d4be014f22ba7775cfae5b9a03.
Article
59. Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Smoley SA, et al. 2020; Clinical value of next generation sequencing in the detection of recurring structural rearrangements and copy number abnormalities in acute myeloid leukemia. Blood. 136(S1):21–2. DOI: 10.1182/blood-2020-139691.
Article
60. Hartmann L, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. 2019; Myeloid malignancies with isolated 7q deletion can be further characterized by their accompanying molecular mutations. Genes Chromosomes Cancer. 58:698–704. DOI: 10.1002/gcc.22761. PMID: 30994218.
Article
61. Haase D, Germing U, Schanz J, Pfeilstöcker M, Nösslinger T, Hildebrandt B, et al. 2007; New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 110:4385–95. DOI: 10.1182/blood-2007-03-082404. PMID: 17726160.
Article
62. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. 2012; Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120:2454–65. DOI: 10.1182/blood-2012-03-420489. PMID: 22740453. PMCID: PMC4425443.
Article
63. Schanz J, Tüchler H, Solé F, Mallo M, Luno E, Cervera J, et al. 2012; New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 30:820–9. DOI: 10.1200/JCO.2011.35.6394. PMID: 22331955. PMCID: PMC4874200.
Article
64. Kantarjian H, O'Brien S, Ravandi F, Borthakur G, Faderl S, Bueso-Ramos C, et al. 2009; The heterogeneous prognosis of patients with myelodysplastic syndrome and chromosome 5 abnormalities: how does it relate to the original lenalidomide experience in MDS? Cancer. 115:5202–9. DOI: 10.1002/cncr.24575. PMID: 19691096. PMCID: PMC2783477.
Article
65. Garcia-Manero G, Chien KS, Montalban-Bravo G. 2020; Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol. 95:1399–420. DOI: 10.1002/ajh.25950. PMID: 32744763.
Article
66. Bănescu C, Tripon F, Muntean C. 2023; The genetic landscape of myelodysplastic neoplasm progression to acute myeloid leukemia. Int J Mol Sci. 24:5734. DOI: 10.3390/ijms24065734. PMID: 36982819. PMCID: PMC10058431.
Article
67. Neuman WL, Rubin CM, Rios RB, Larson RA, Le Beau MM, Rowley JD, et al. 1992; Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood. 79:1501–10. DOI: 10.1182/blood.V79.6.1501.1501. PMID: 1347709.
Article
68. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, et al. 2008; Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 451:335–9. DOI: 10.1038/nature06494. PMID: 18202658. PMCID: PMC3771855.
Article
69. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, et al. 2011; Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 117:2567–76. DOI: 10.1182/blood-2010-07-295238. PMID: 21068437. PMCID: PMC3062351.
Article
70. Wei S, Chen X, McGraw K, Zhang L, Komrokji R, Clark J, et al. 2013; Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene. 32:1110–20. DOI: 10.1038/onc.2012.139. PMID: 22525275. PMCID: PMC3751397.
Article
71. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. 2000; Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 96:4075–83. DOI: 10.1182/blood.V96.13.4075. PMID: 11110676.
Article
72. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. 2002; Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 100:4325–36. DOI: 10.1182/blood-2002-03-0772. PMID: 12393746.
Article
73. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. 2001; The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 98:1312–20. DOI: 10.1182/blood.V98.5.1312. PMID: 11520776.
Article
74. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. 1998; The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 92:2322–33. DOI: 10.1182/blood.V92.7.2322. PMID: 9746770.
75. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. 1995; Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 86:3542–52. DOI: 10.1182/blood.V86.9.3542.bloodjournal8693542. PMID: 7579462.
Article
76. Bhatia S. 2013; Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 40:666–75. DOI: 10.1053/j.seminoncol.2013.09.013. PMID: 24331189. PMCID: PMC3867743.
Article
77. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. 2003; Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 102:43–52. DOI: 10.1182/blood-2002-11-3343. PMID: 12623843.
Article
78. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. 2015; Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 125:1367–76. DOI: 10.1182/blood-2014-11-610543. PMID: 25550361. PMCID: PMC4342352.
Article
79. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. 2001; Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 19:1405–13. DOI: 10.1200/JCO.2001.19.5.1405. PMID: 11230485.
80. Koenig KL, Sahasrabudhe KD, Sigmund AM, Bhatnagar B. 2020; AML with myelodysplasia-related changes: development, challenges, and treatment advances. Genes (Basel). 11:845. DOI: 10.3390/genes11080845. PMID: 32722092. PMCID: PMC7464320.
Article
81. Arber DA, Erba HP. 2020; Diagnosis and treatment of patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Am J Clin Pathol. 154:731–41. DOI: 10.1093/ajcp/aqaa107. PMID: 32864703. PMCID: PMC7610263.
Article
82. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. 2016; Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–21. DOI: 10.1056/NEJMoa1516192. PMID: 27276561. PMCID: PMC4979995.
Article
83. Mrózek K. 2008; Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 35:365–77. DOI: 10.1053/j.seminoncol.2008.04.007. PMID: 18692687. PMCID: PMC3640813.
Article
84. Mrózek K, Heinonen K, Theil KS, Bloomfield CD. 2002; Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes Cancer. 34:137–53. DOI: 10.1002/gcc.10027. PMID: 11979548.
Article
85. Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, et al. 2002; Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer. 35:20–9. DOI: 10.1002/gcc.10088. PMID: 12203786.
Article
86. Van Limbergen H, Poppe B, Michaux L, Herens C, Brown J, Noens L, et al. 2002; Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer. 33:60–72. DOI: 10.1002/gcc.1212. PMID: 11746988.
Article
87. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. 2008; Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 26:4791–7. DOI: 10.1200/JCO.2008.16.0259. PMID: 18695255.
Article
88. Kayser S, Zucknick M, Döhner K, Krauter J, Köhne CH, Horst HA, et al. 2012; Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood. 119:551–8. DOI: 10.1182/blood-2011-07-367508. PMID: 22096250.
Article
89. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. 2012; TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 119:2114–21. DOI: 10.1182/blood-2011-08-375758. PMID: 22186996.
Article
90. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. 2015; Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 518:552–5. DOI: 10.1038/nature13968. PMID: 25487151. PMCID: PMC4403236.
Article
91. Simmons HM, Oseth L, Nguyen P, O'Leary M, Conklin KF, Hirsch B. 2002; Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia. 16:2408–16. DOI: 10.1038/sj.leu.2402773. PMID: 12454746.
Article
92. Kalra R, Dale D, Freedman M, Bonilla MA, Weinblatt M, Ganser A, et al. 1995; Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congenital neutropenia. Blood. 86:4579–86. DOI: 10.1182/blood.V86.12.4579.bloodjournal86124579. PMID: 8541548.
Article
93. Pezeshki A, Podder S, Kamel R, Corey SJ. 2017; Monosomy 7/del (7q) in inherited bone marrow failure syndromes: a systematic review. Pediatr Blood Cancer. 64:10.1002/pbc.26714. DOI: 10.1002/pbc.26714. PMID: 28708320. PMCID: PMC5937691.
Article
94. Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. 2021; Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 27:1806–17. DOI: 10.1038/s41591-021-01511-6. PMID: 34621053. PMCID: PMC9330547.
95. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. 2010; Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 116:354–65. DOI: 10.1182/blood-2009-11-254441. PMID: 20385793.
Article
96. Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, et al. 2023; Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 21:503–13. DOI: 10.6004/jnccn.2023.0025. PMID: 37156478.
97. Jentzsch M, Bischof L, Ussmann J, Backhaus D, Brauer D, Metzeler KH, et al. 2022; Prognostic impact of the AML ELN2022 risk classification in patients undergoing allogeneic stem cell transplantation. Blood Cancer J. 12:170. DOI: 10.1038/s41408-022-00764-9. PMID: 36529759. PMCID: PMC9760726. PMID: 48de5f2f686c4beabb2ac283efa9a668.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr