1. Aqel S, Syaj S, Al-Bzour A, Abuzanouneh F, Al-Bzour N, Ahmad J. 2023; Artificial intelligence and machine learning applications in sudden cardiac arrest prediction and management: a comprehensive review. Curr Cardiol Rep. 25:1391–6. DOI:
10.1007/s11886-023-01964-w. PMID:
37792134. PMCID:
PMC10682172.
Article
2. Hoybye M, Stankovic N, Holmberg M, Christensen HC, Granfeldt A, Andersen LW. 2021; In-hospital vs. out-of-hospital cardiac arrest: patient characteristics and survival. Resuscitation. 158:157–65. DOI:
10.1016/j.resuscitation.2020.11.016. PMID:
33221361.
Article
4. Stenhouse C, Coates S, Tivey M, Allsop P, Parker T. 1999; Prospective evaluation of a modified Early Warning Score to aid earlier detection of patients developing critical illness on a general surgical ward. Br J Anaesth. 84:663. DOI:
10.1093/bja/84.5.663.
Article
5. Royal College of Physicians. 2012. National Early Warning Score (NEWS): standardising the assessment of acute-illness severity in the NHS. Royal College of Physicians;London, UK: DOI:
10.53347/rid-72074.
6. Seok HS, Yu S, Shin KH, Lee W, Chun S, Kim S, et al. 2024; Machine learning-based sample misidentification error detection in clinical laboratory tests: a retrospective multicenter study. Clin Chem. 70:1256–67. DOI:
10.1093/clinchem/hvae114. PMID:
39172697.
Article
7. Seok HS, Choi Y, Yu S, Shin KH, Kim S, Shin H. 2024; Machine learning-based delta check method for detecting misidentification errors in tumor marker tests. Clin Chem Lab Med. 62:1421–32. DOI:
10.1515/cclm-2023-1185. PMID:
38095534.
Article
8. Wu TT, Lin XQ, Mu Y, Li H, Guo YS. 2021; Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes. Clin Cardiol. 44:349–56. DOI:
10.1002/clc.23541. PMID:
33586214. PMCID:
PMC7943901.
Article
10. Lu TC, Wang CH, Chou FY, Sun JT, Chou EH, Huang EP, et al. 2023; Machine learning to predict in-hospital cardiac arrest from patients presenting to the emergency department. Intern Emerg Med. 18:595–605. DOI:
10.1007/s11739-022-03143-1. PMID:
36335518.
Article
12. Cho KJ, Kim JS, Lee DH, Lee SM, Song MJ, Lim SY, et al. 2023; Prospective, multicenter validation of the deep learning-based cardiac arrest risk management system for predicting in-hospital cardiac arrest or unplanned intensive care unit transfer in patients admitted to general wards. Crit Care. 27:346. DOI:
10.1186/s13054-023-04609-0. PMID:
37670324. PMCID:
PMC10481524. PMID:
7893bde99ae84f16b2019d5d6beefc91.
Article
17. Park H, Park CS. 2025; A Machine learning approach for predicting in-hospital cardiac arrest using single-day vital signs, laboratory test results, and international classification of disease-10 block for diagnosis. Ann Lab Med. 45:209–17. DOI:
10.3343/alm.2024.0315. PMID:
39668659.
Article
23. Kim S, Jeong TD, Lee K, Chung JW, Cho EJ, Lee S, et al. 2024; Quantitative evaluation of the real-world harmonization status of laboratory test items using external quality assessment data. Ann Lab Med. 44:529–36. DOI:
10.3343/alm.2024.0082. PMID:
38919008. PMCID:
PMC11375196.
Article
25. Choi Y, Lee K, Choi H-J, Moon SY, Lim J, Kim S. 2024; Quality status of the preanalytical phase of clinical laboratories in Korea. Laboratory Medicine Online. 14:90–9. DOI:
10.47429/lmo.2024.14.2.90.
Article
28. Cho EJ, Jeong TD, Kim S, Park HD, Yun YM, Chun S, et al. 2023; A new strategy for evaluating the quality of laboratory results for big data research: using External Quality Assessment Survey Data (2010-2020). Ann Lab Med. 43:425–33. DOI:
10.3343/alm.2023.43.5.425. PMID:
37080743. PMCID:
PMC10151270.
Article
29. Ong ME, Lee Ng CH, Goh K, Liu N, Koh ZX, Shahidah N, et al. 2012; Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Crit Care. 16:R108. DOI:
10.1186/cc11396. PMID:
22715923. PMCID:
PMC3580666.
Article
30. Liu N, Koh ZX, Goh J, Lin Z, Haaland B, Ting BP, et al. 2014; Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. BMC Med Inform Decis Mak. 14:75. DOI:
10.1186/1472-6947-14-75. PMID:
25150702. PMCID:
PMC4150554.
Article
31. Churpek MM, Yuen TC, Winslow C, Robicsek AA, Meltzer DO, Gibbons RD, et al. 2014; Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med. 190:649–55. DOI:
10.1164/rccm.201406-1022OC. PMID:
25089847. PMCID:
PMC4214112.
Article
32. Green M, Lander H, Snyder A, Hudson P, Churpek M, Edelson D. 2018; Comparison of the between the flags calling criteria to the MEWS, NEWS and the electronic cardiac arrest risk triage (eCART) score for the identification of deteriorating ward patients. Resuscitation. 123:86–91. DOI:
10.1016/j.resuscitation.2017.10.028. PMID:
29169912. PMCID:
PMC6556215.
Article
33. Bartkowiak B, Snyder AM, Benjamin A, Schneider A, Twu NM, Churpek MM, et al. 2019; Validating the electronic cardiac arrest risk triage (eCART) score for risk stratification of surgical inpatients in the postoperative setting: retrospective cohort study. Ann Surg. 269:1059–63. DOI:
10.1097/SLA.0000000000002665. PMID:
31082902. PMCID:
PMC6610875.
35. Jang DH, Kim J, Jo YH, Lee JH, Hwang JE, Park SM, et al. 2020; Developing neural network models for early detection of cardiac arrest in emergency department. Am J Emerg Med. 38:43–9. DOI:
10.1016/j.ajem.2019.04.006. PMID:
30982559.
Article
36. Kim J, Chae M, Chang HJ, Kim YA, Park E. 2019; Predicting cardiac arrest and respiratory failure using feasible artificial intelligence with simple trajectories of patient data. J Clin Med. 8:DOI:
10.3390/jcm8091336. PMID:
31470543. PMCID:
PMC6780058.
Article
37. Cho KJ, Kwon O, Kwon JM, Lee Y, Park H, Jeon KH, et al. 2020; Detecting patient deterioration using artificial intelligence in a rapid response system. Crit Care Med. 48:e285–e9. DOI:
10.1097/CCM.0000000000004236. PMID:
32205618.
Article