Ann Lab Med.  2025 Mar;45(2):117-120. 10.3343/alm.2024.0696.

Enhancing Clinical Cardiac Care: Predicting In-Hospital Cardiac Arrest With Machine Learning

Affiliations
  • 1Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Keyword

Artificial intelligence; In-hospital cardiac arrest; In-hospital cardiac arrest; Laboratory data; Laboratory data; Machine learning; Machine learning; Predictive modeling; Predictive modeling

Reference

References

1. Aqel S, Syaj S, Al-Bzour A, Abuzanouneh F, Al-Bzour N, Ahmad J. 2023; Artificial intelligence and machine learning applications in sudden cardiac arrest prediction and management: a comprehensive review. Curr Cardiol Rep. 25:1391–6. DOI: 10.1007/s11886-023-01964-w. PMID: 37792134. PMCID: PMC10682172.
Article
2. Hoybye M, Stankovic N, Holmberg M, Christensen HC, Granfeldt A, Andersen LW. 2021; In-hospital vs. out-of-hospital cardiac arrest: patient characteristics and survival. Resuscitation. 158:157–65. DOI: 10.1016/j.resuscitation.2020.11.016. PMID: 33221361.
Article
3. Moffat LM, Xu D. 2022; Accuracy of Machine Learning Models to Predict In-hospital Cardiac Arrest: A Systematic Review. Clin Nurse Spec. 36:29–44. DOI: 10.1097/NUR.0000000000000644. PMID: 34843192.
Article
4. Stenhouse C, Coates S, Tivey M, Allsop P, Parker T. 1999; Prospective evaluation of a modified Early Warning Score to aid earlier detection of patients developing critical illness on a general surgical ward. Br J Anaesth. 84:663. DOI: 10.1093/bja/84.5.663.
Article
5. Royal College of Physicians. 2012. National Early Warning Score (NEWS): standardising the assessment of acute-illness severity in the NHS. Royal College of Physicians;London, UK: DOI: 10.53347/rid-72074.
6. Seok HS, Yu S, Shin KH, Lee W, Chun S, Kim S, et al. 2024; Machine learning-based sample misidentification error detection in clinical laboratory tests: a retrospective multicenter study. Clin Chem. 70:1256–67. DOI: 10.1093/clinchem/hvae114. PMID: 39172697.
Article
7. Seok HS, Choi Y, Yu S, Shin KH, Kim S, Shin H. 2024; Machine learning-based delta check method for detecting misidentification errors in tumor marker tests. Clin Chem Lab Med. 62:1421–32. DOI: 10.1515/cclm-2023-1185. PMID: 38095534.
Article
8. Wu TT, Lin XQ, Mu Y, Li H, Guo YS. 2021; Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes. Clin Cardiol. 44:349–56. DOI: 10.1002/clc.23541. PMID: 33586214. PMCID: PMC7943901.
Article
9. Chae M, Han S, Gil H, Cho N, Lee H. 2021; Prediction of in-hospital cardiac arrest using shallow and deep learning. Diagnostics (Basel). 11:DOI: 10.3390/diagnostics11071255. PMID: 34359337. PMCID: PMC8307337. PMID: 4bed9da20e7b46c8858cdce4cd0293f8.
Article
10. Lu TC, Wang CH, Chou FY, Sun JT, Chou EH, Huang EP, et al. 2023; Machine learning to predict in-hospital cardiac arrest from patients presenting to the emergency department. Intern Emerg Med. 18:595–605. DOI: 10.1007/s11739-022-03143-1. PMID: 36335518.
Article
11. Kim JH, Choi A, Kim MJ, Hyun H, Kim S, Chang HJ. 2022; Development of a machine-learning algorithm to predict in-hospital cardiac arrest for emergency department patients using a nationwide database. Sci Rep. 12:21797. DOI: 10.1038/s41598-022-26167-1. PMID: 36526686. PMCID: PMC9758227. PMID: aa9f9ee330eb431fbaecad718f6126c8.
Article
12. Cho KJ, Kim JS, Lee DH, Lee SM, Song MJ, Lim SY, et al. 2023; Prospective, multicenter validation of the deep learning-based cardiac arrest risk management system for predicting in-hospital cardiac arrest or unplanned intensive care unit transfer in patients admitted to general wards. Crit Care. 27:346. DOI: 10.1186/s13054-023-04609-0. PMID: 37670324. PMCID: PMC10481524. PMID: 7893bde99ae84f16b2019d5d6beefc91.
Article
13. Lee H, Yang HL, Ryu HG, Jung CW, Cho YJ, Yoon SB, et al. 2023; Real-time machine learning model to predict in-hospital cardiac arrest using heart rate variability in ICU. NPJ Digit Med. 6:215. DOI: 10.1038/s41746-023-00960-2. PMID: 37993540. PMCID: PMC10665411. PMID: 5fefbcff5c4e439892c05e23da4dfc15.
Article
14. Ding X, Wang Y, Ma W, Peng Y, Huang J, Wang M, et al. 2023; Development of early prediction model of in-hospital cardiac arrest based on laboratory parameters. Biomed Eng Online. 22:116. DOI: 10.1186/s12938-023-01178-9. PMID: 38057823. PMCID: PMC10698946. PMID: 3c234bef3dc04136a5831eb4415ba1e9.
Article
15. Lee HY, Kuo PC, Qian F, Li CH, Hu JR, Hsu WT, et al. 2024; Prediction of In-Hospital Cardiac Arrest in the Intensive Care Unit: Machine Learning-Based Multimodal Approach. JMIR Med Inform. 12:e49142. DOI: 10.2196/49142. PMID: 39051152. PMCID: PMC11287234. PMID: a4632481556d46b2b0c3ba6cff63e188.
Article
16. Wu WT, Kor CT, Chou MC, Hsieh HM, Huang WC, Huang WL, et al. 2024; Prediction model of in-hospital cardiac arrest using machine learning in the early phase of hospitalization. Kaohsiung J Med Sci. 40:1029–35. DOI: 10.1002/kjm2.12895. PMID: 39319603. PMID: b135a7655c35411783d60179316069e7.
Article
17. Park H, Park CS. 2025; A Machine learning approach for predicting in-hospital cardiac arrest using single-day vital signs, laboratory test results, and international classification of disease-10 block for diagnosis. Ann Lab Med. 45:209–17. DOI: 10.3343/alm.2024.0315. PMID: 39668659.
Article
18. You J, Seok HS, Kim S, Shin H. 2025; Advancing laboratory medicine practice with machine learning: swift yet exact. Ann Lab Med. 45:22–35. DOI: 10.3343/alm.2024.0354. PMID: 39587856. PMCID: PMC11609717.
Article
19. Shin J, Kim JY. 2024; Customized quality assessment of healthcare data. Ann Lab Med. 44:472–7. DOI: 10.3343/alm.2024.0084. PMID: 39013561. PMCID: PMC11375191.
Article
20. Kim S, Min WK. 2025; Toward high-quality real-world laboratory data in the era of healthcare big data. Ann Lab Med. 45:1–11. DOI: 10.3343/alm.2024.0258. PMID: 39344148. PMCID: PMC11609703.
Article
21. Luu HS. 2025; Laboratory Data as a Potential Source of Bias in Healthcare Artificial intelligence and machine learning models. Ann Lab Med. 45:12–21. DOI: 10.3343/alm.2024.0323. PMID: 39444135. PMCID: PMC11609702.
Article
22. Park HA. 2024; Why Terminology Standards Matter for Data-driven Artificial Intelligence in Healthcare. Ann Lab Med. 44:467–71. DOI: 10.3343/alm.2024.0105. PMID: 38955364. PMCID: PMC11375201.
Article
23. Kim S, Jeong TD, Lee K, Chung JW, Cho EJ, Lee S, et al. 2024; Quantitative evaluation of the real-world harmonization status of laboratory test items using external quality assessment data. Ann Lab Med. 44:529–36. DOI: 10.3343/alm.2024.0082. PMID: 38919008. PMCID: PMC11375196.
Article
24. Chang J, Lim J, Chung JW, Sohn YH, Jang MJ, Kim S. 2023; Status of pre-analytical quality management of laboratory tests at primary clinics in Korea. Ann Lab Med. 43:493–502. DOI: 10.3343/alm.2023.43.5.493. PMID: 37080751. PMCID: PMC10151268.
Article
25. Choi Y, Lee K, Choi H-J, Moon SY, Lim J, Kim S. 2024; Quality status of the preanalytical phase of clinical laboratories in Korea. Laboratory Medicine Online. 14:90–9. DOI: 10.47429/lmo.2024.14.2.90.
Article
26. Kim S. 2023; Laboratory data quality evaluation in the big data era. Ann Lab Med. 43:399–400. DOI: 10.3343/alm.2023.43.5.399. PMID: 37080739. PMCID: PMC10151286.
Article
27. Kim S, Cho EJ, Jeong TD, Park HD, Yun YM, Lee K, et al. 2023; Proposed model for evaluating real-world laboratory results for big data research. Ann Lab Med. 43:104–7. DOI: 10.3343/alm.2023.43.1.104. PMID: 36045065. PMCID: PMC9467825.
Article
28. Cho EJ, Jeong TD, Kim S, Park HD, Yun YM, Chun S, et al. 2023; A new strategy for evaluating the quality of laboratory results for big data research: using External Quality Assessment Survey Data (2010-2020). Ann Lab Med. 43:425–33. DOI: 10.3343/alm.2023.43.5.425. PMID: 37080743. PMCID: PMC10151270.
Article
29. Ong ME, Lee Ng CH, Goh K, Liu N, Koh ZX, Shahidah N, et al. 2012; Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Crit Care. 16:R108. DOI: 10.1186/cc11396. PMID: 22715923. PMCID: PMC3580666.
Article
30. Liu N, Koh ZX, Goh J, Lin Z, Haaland B, Ting BP, et al. 2014; Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. BMC Med Inform Decis Mak. 14:75. DOI: 10.1186/1472-6947-14-75. PMID: 25150702. PMCID: PMC4150554.
Article
31. Churpek MM, Yuen TC, Winslow C, Robicsek AA, Meltzer DO, Gibbons RD, et al. 2014; Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med. 190:649–55. DOI: 10.1164/rccm.201406-1022OC. PMID: 25089847. PMCID: PMC4214112.
Article
32. Green M, Lander H, Snyder A, Hudson P, Churpek M, Edelson D. 2018; Comparison of the between the flags calling criteria to the MEWS, NEWS and the electronic cardiac arrest risk triage (eCART) score for the identification of deteriorating ward patients. Resuscitation. 123:86–91. DOI: 10.1016/j.resuscitation.2017.10.028. PMID: 29169912. PMCID: PMC6556215.
Article
33. Bartkowiak B, Snyder AM, Benjamin A, Schneider A, Twu NM, Churpek MM, et al. 2019; Validating the electronic cardiac arrest risk triage (eCART) score for risk stratification of surgical inpatients in the postoperative setting: retrospective cohort study. Ann Surg. 269:1059–63. DOI: 10.1097/SLA.0000000000002665. PMID: 31082902. PMCID: PMC6610875.
34. Kwon JM, Lee Y, Lee Y, Lee S, Park J. 2018; An algorithm based on deep learning for predicting in-hospital cardiac arrest. J Am Heart Assoc. 7:DOI: 10.1161/JAHA.118.008678. PMID: 29945914. PMCID: PMC6064911. PMID: 8016cec78ea048a8976e8c8a3d8fec81.
Article
35. Jang DH, Kim J, Jo YH, Lee JH, Hwang JE, Park SM, et al. 2020; Developing neural network models for early detection of cardiac arrest in emergency department. Am J Emerg Med. 38:43–9. DOI: 10.1016/j.ajem.2019.04.006. PMID: 30982559.
Article
36. Kim J, Chae M, Chang HJ, Kim YA, Park E. 2019; Predicting cardiac arrest and respiratory failure using feasible artificial intelligence with simple trajectories of patient data. J Clin Med. 8:DOI: 10.3390/jcm8091336. PMID: 31470543. PMCID: PMC6780058.
Article
37. Cho KJ, Kwon O, Kwon JM, Lee Y, Park H, Jeon KH, et al. 2020; Detecting patient deterioration using artificial intelligence in a rapid response system. Crit Care Med. 48:e285–e9. DOI: 10.1097/CCM.0000000000004236. PMID: 32205618.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr