Ann Rehabil Med.  2025 Feb;49(1):40-48. 10.5535/arm.240042.

Nerve Conduction Study, Sympathetic Skin Response Test, and Demographic Correlates in Type 2 Diabetes Mellitus Patients

Affiliations
  • 1Department of Physical and Rehabilitation Medicine, Inha University College of Medicine, Incheon, Korea
  • 2Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea

Abstract


Objective
To comprehensively assess the relationship between nerve conduction study (NCS), sympathetic skin response (SSR), and demographic factors in patients with diabetic neuropathy, exploring potential risk factors and mechanisms.
Methods
A retrospective study (N=184) included patients diagnosed with type 2 diabetes mellitus undergoing NCS and SSR. Demographic, clinical, and laboratory data were analyzed. Patients were categorized by diabetic peripheral neuropathy (DPN) and SSR stages for comparative analysis.
Results
HbA1c levels correlated with DPN progression. SSR stages exhibited age-related differences. Height correlated with DPN but not SSR stages. Body mass index showed no significant differences.
Conclusion
While DPN progression correlated with glycemic control and duration of diabetes, SSR was influenced by age. Unexpectedly, cholesterol levels remained within the normal range, challenging established concepts. Understanding these relationships is crucial for interpreting test results and developing targeted interventions for diabetic neuropathy.

Keyword

Diabetic neuropathy; Nerve conduction studies; Sympathetic skin response

Figure


Reference

1. Vinik AI, Mehrabyan A. Diabetic neuropathies. Med Clin North Am. 2004; 88:947–99. DOI: 10.1016/j.mcna.2004.04.009. PMID: 15308387.
Article
2. Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S, et al. New perspective in diabetic neuropathy: from the periphery to the brain, a call for early detection, and precision medicine. Front Endocrinol (Lausanne). 2020; 10:929. DOI: 10.3389/fendo.2019.00929. PMID: 32010062.
Article
3. Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy. 2004; 105:108–16. PMID: 15253529.
4. Vetrugno R, Liguori R, Cortelli P, Montagna P. Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res. 2003; 13:256–70. DOI: 10.1007/s10286-003-0107-5. PMID: 12955550.
5. Braune HJ, Horter C. Sympathetic skin response in diabetic neuropathy: a prospective clinical and neurophysiological trial on 100 patients. J Neurol Sci. 1996; 138:120–4. DOI: 10.1016/0022-510x(96)00023-8. PMID: 8791249.
Article
6. Shin JB, Kim C, Lee JH, Chun S. Sympathetic skin response in diabetic patients. J Korean Acad Rehab Med. 1994; 18:286–92.
7. Lee IS, Kim HS, Ahn KH. Sympathetic skin response in diabetes mellitus. J Korean Acad Rehabil Med. 1993; 17:165–76.
8. Müller G, Parfentyeva E, Olschewsky J, Bornstein SR, Schwarz PE. Assessment of small fiber neuropathy to predict future risk of type 2 diabetes. Prim Care Diabetes. 2013; 7:269–73. DOI: 10.1016/j.pcd.2013.08.001. PMID: 24076379.
Article
9. Liu X, Xu Y, An M, Zeng Q. The risk factors for diabetic peripheral neuropathy: a meta-analysis. PLoS One. 2019; 14:e0212574. DOI: 10.1371/journal.pone.0212574. PMID: 30785930.
Article
10. Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol. 1996; 55:1181–93. DOI: 10.1097/00005072-199612000-00001. PMID: 8957441.
11. Han EY, Kim CH. Reproducibility of nerve conduction study parameters: a comparison of normal and diabetic patients with neuropathy. J Korean Acad Rehabil Med. 2007; 31:699–704.
12. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019; 5:41. DOI: 10.1038/s41572-019-0092-1. PMID: 31197153.
Article
13. Román-Pintos LM, Villegas-Rivera G, Rodríguez-Carrizalez AD, Miranda-Díaz AG, Cardona-Muñoz EG. Diabetic polyneuropathy in type 2 diabetes mellitus: inflammation, oxidative stress, and mitochondrial function. J Diabetes Res. 2016; 2016:3425617. DOI: 10.1155/2016/3425617. PMID: 28058263.
Article
14. Levy DM, Reid G, Rowley DA, Abraham RR. Quantitative measures of sympathetic skin response in diabetes: relation to sudomotor and neurological function. J Neurol Neurosurg Psychiatry. 1992; 55:902–8. DOI: 10.1136/jnnp.55.10.902. PMID: 1331334.
Article
15. Emad M, Roshanzamir S, Dabbaghmanesh A, Ghasempoor MZ, Eivazlou H. Inclusion of height and limb length when interpreting sympathetic skin response. Iran J Med Sci. 2016; 41:48–52. PMID: 26722145.
16. Oh TJ, Lee JE, Choi SH, Jang HC. Association between body fat and diabetic peripheral neuropathy in middle-aged adults with type 2 diabetes mellitus: a preliminary report. J Obes Metab Syndr. 2019; 28:112–7. DOI: 10.7570/jomes.2019.28.2.112. PMID: 31294343.
Article
17. Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications. 2013; 27:436–42. DOI: 10.1016/j.jdiacomp.2013.04.003. PMID: 23731827.
Article
18. Zhang H, Chen Y, Zhu W, Niu T, Song B, Wang H, et al. The mediating role of HbA1c in the association between elevated low-density lipoprotein cholesterol levels and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. Lipids Health Dis. 2023; 22:102. DOI: 10.1186/s12944-023-01865-5. PMID: 37443036.
Article
19. Chang KC, Pai YW, Lin CH, Lee IT, Chang MH. The association between hyperlipidemia, lipid-lowering drugs and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. PLoS One. 2023; 18:e0287373. DOI: 10.1371/journal.pone.0287373. PMID: 37319238.
Article
20. Cai Z, Yang Y, Zhang J. A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy. Sci Rep. 2021; 11:499. DOI: 10.1038/s41598-020-79276-0. PMID: 33436718.
Article
21. Jende JME, Groener JB, Rother C, Kender Z, Hahn A, Hilgenfeld T, et al. Association of serum cholesterol levels with peripheral nerve damage in patients with type 2 diabetes. JAMA Netw Open. 2019; 2:e194798. DOI: 10.1001/jamanetworkopen.2019.4798. PMID: 31150078.
Article
22. Nozawa K, Ikeda M, Kikuchi S. Association between HbA1c levels and diabetic peripheral neuropathy: a case-control study of patients with type 2 diabetes using claims data. Drugs Real World Outcomes. 2022; 9:403–14. DOI: 10.1007/s40801-022-00309-3. PMID: 35725984.
Article
23. Lai YR, Chiu WC, Huang CC, Tsai NW, Wang HC, Lin WC, et al. HbA1C variability is strongly associated with the severity of peripheral neuropathy in patients with type 2 diabetes. Front Neurosci. 2019; 13:90. DOI: 10.3389/fnins.2019.00090. PMID: 30814926.
Article
24. Lee WJ, Jang S, Lee SH, Lee HS. Correlation between the severity of diabetic peripheral polyneuropathy and glycosylated hemoglobin levels: a quantitative study. Ann Rehabil Med. 2016; 40:263–70. DOI: 10.5535/arm.2016.40.2.263. PMID: 27152276.
Article
25. Ashar I, Yudiyanta , Asmedi A. Correlation of HbA1c level with electrodiagnostic parameters of diabetic autonomic neuropathy. Berkala Neurosains. 2020; 19:120–5.
26. Drory VE, Korczyn AD. Sympathetic skin response: age effect. Neurology. 1993; 43:1818–20. DOI: 10.1212/wnl.43.9.1818. PMID: 8414038.
Full Text Links
  • ARM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr