1. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. American Heart Association Council on Functional Genomics and Translational Biology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular and Stroke Nursing. 2018; Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med. 11:e000043. DOI:
10.1161/HCG.0000000000000043.
Article
2. Pang L. 2020; Toxicity testing in the era of induced pluripotent stem cells: a perspective regarding the use of patient-specific induced pluripotent stem cell-derived cardiomyocytes for cardiac safety evaluation. Curr Opin Toxicol. 23-24:50–55. DOI:
10.1016/j.cotox.2020.04.001.
Article
3. Gintant G, Fermini B, Stockbridge N, Strauss D. 2017; The evolving roles of human iPSC-derived cardiomyocytes in drug safety and discovery. Cell Stem Cell. 21:14–17. DOI:
10.1016/j.stem.2017.06.005. PMID:
28686863.
Article
4. Oh J, Kwon OB, Park SW, Kim JW, Lee H, Kim YK, Choi EJ, Jung H, Choi DK, Oh BJ, Min SH. 2024; Advancing cardiovascular drug screening using human pluripotent stem cell-derived cardiomyocytes. Int J Mol Sci. 25:7971. DOI:
10.3390/ijms25147971. PMID:
39063213. PMCID:
PMC11277421.
Article
5. Kussauer S, David R, Lemcke H. 2019; hiPSCs derived cardiac cells for drug and toxicity screening and disease modeling: what micro- electrode-array analyses can tell us. Cells. 8:1331. DOI:
10.3390/cells8111331. PMID:
31661896. PMCID:
PMC6912416.
Article
6. Cai D, Wang X, Sun Y, Fan H, Zhou J, Yang Z, Qiu H, Wang J, Su J, Gong T, Jiang C, Liang P. 2023; Patient-specific iPSC-derived cardiomyocytes reveal aberrant activation of Wnt/β-catenin signaling in SCN5A-related Brugada syndrome. Stem Cell Res Ther. 14:241. DOI:
10.1186/s13287-023-03477-3. PMID:
37679791. PMCID:
PMC10486057.
Article
8. Park NK, Park SJ, Park YG, Moon SH, Woo J, Kim HJ, Kim SJ, Choi SW. 2024; Translation reinitiation in c.453delC frameshift mutation of KCNH2 producing functional hERG K+ channels with mild dominant negative effect in the heterozygote patient-derived iPSC cardiomyocytes. Hum Mol Genet. 33:110–121. DOI:
10.1093/hmg/ddad165. PMID:
37769355.
Article
9. Rim YA, Park N, Nam Y, Ham DS, Kim JW, Ha HY, Jung JW, Jung SM, Baek IC, Kim SY, Kim TG, Song J, Lee J, Park SH, Chung NG, Yoon KH, Ju JH. 2018; Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J Tissue Eng Regen Med. 12:e1531–e1536. DOI:
10.1002/term.2578.
10. Lee Y, Koo SK, Kim JH. 2021; Establishment of a human-induced pluripotent stem cell line, KSCBi014-A, from a long QT syndrome type 2 patient harboring a KCNH2 mutation. Stem Cell Res. 57:102570. DOI:
10.1016/j.scr.2021.102570. PMID:
34678663.
Article
11. Park SJ, Kim RY, Park BW, Lee S, Choi SW, Park JH, Choi JJ, Kim SW, Jang J, Cho DW, Chung HM, Moon SH, Ban K, Park HJ. 2019; Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun. 10:3123. DOI:
10.1038/s41467-019-11091-2. PMID:
31311935. PMCID:
PMC6635499.
Article
12. Park SJ, Kim H, Lee S, Kim J, Jung TH, Choi SW, Park BW, Kang SW, Elliott DA, Stanley EG, Elefanty AG, Ban K, Park HJ, Moon SH. 2022; Effect and application of cryopreserved three-dimensional microcardiac spheroids in myocardial infarction therapy. Clin Transl Med. 12:e721. DOI:
10.1002/ctm2.721. PMID:
35092703. PMCID:
PMC8800481.
Article
13. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. 2014; Chemically defined generation of human cardiomyocytes. Nat Methods. 11:855–860. DOI:
10.1038/nmeth.2999. PMID:
24930130. PMCID:
PMC4169698.
Article
14. Millard D, Dang Q, Shi H, Zhang X, Strock C, Kraushaar U, Zeng H, Levesque P, Lu HR, Guillon JM, Wu JC, Li Y, Luerman G, Anson B, Guo L, Clements M, Abassi YA, Ross J, Pierson J, Gintant G. 2018; Cross-site reliability of human induced pluripotent stem cell-derived cardiomyocyte based safety assays using microelectrode arrays: results from a blinded CiPA pilot study. Toxicol Sci. 164:550–562. DOI:
10.1093/toxsci/kfy110. PMID:
29718449. PMCID:
PMC6061700.
Article
15. Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L, Brock M, Lu HR, Kraushaar U, Zeng H, Shi H, Zhang X, Sawada K, Osada T, Kanda Y, Sekino Y, Pang L, Feaster TK, Kettenhofen R, Stockbridge N, et al. 2018; International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep. 24:3582–3592. DOI:
10.1016/j.celrep.2018.08.079. PMID:
30257217. PMCID:
PMC6226030.
Article
16. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N. 2016; The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - update on progress. J Pharmacol Toxicol Methods. 81:15–20. DOI:
10.1016/j.vascn.2016.06.002. PMID:
27282641.
Article
17. Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. 2023; Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 14:228. DOI:
10.1186/s13287-023-03470-w. PMID:
37649113. PMCID:
PMC10469435.
Article
18. Serrano R, Feyen DAM, Bruyneel AAN, Hnatiuk AP, Vu MM, Amatya PL, Perea-Gil I, Prado M, Seeger T, Wu JC, Karakikes I, Mercola M. 2023; A deep learning platform to assess drug proarrhythmia risk. Cell Stem Cell. 30:86–95.e4. DOI:
10.1016/j.stem.2022.12.002. PMID:
36563695. PMCID:
PMC9924077.
Article
19. Mondejar-Parreño G, Sanchez-Perez P, Cruz FM, Jalife J. 2024; Promising tools for future drug discovery and development in antiarrhythmic therapy. Pharmacol Rev. PHARMREV-AR-2024-001297.