Korean J Physiol Pharmacol.  2025 Mar;29(2):191-204. 10.4196/kjpp.24.132.

Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway

Affiliations
  • 1Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China

Abstract

To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.

Keyword

Cisplatin; Drug resistance; Drug therapy; Histone deacetylases; Ovarian neoplasms

Figure

  • Fig. 1 Tasquinimod enhanced the anti-proliferative and pro-apoptotic effects of cisplatin in OC/DDP cells. (A) Western blot analysis verified that Tasquinimod inhibited HDAC4 expression in SKOV3/DDP and A2780/DDP cells. (B) CCK8 assays were used to assess the effects of Tasquinimod monotherapy on the viability of SKOV3/DDP and A2780/DDP cells. (C) Flow cytometry was used to detect apoptosis in SKOV3/DDP and A2780/DDP cells treated with Tasquinimod monotherapy. All experiments were independently repeated three times. Tukey’s test and one-way ANOVA were used to analyze statistical significance. Values are presented as mean ± SD. OC, ovarian cancer; HDAC4, histone deacetylase 4; CCK8, cell counting kit-8. *p < 0.05 vs. SKOV3 or A2780 group, #p < 0.05 vs. SKOV3/DDP or A2780/DDP group, &p < 0.05 vs. SKOV3/DDP cells or A2780/DDP cells group, $p < 0.05 vs. SKOV3/DDP cells + cisplatin or A2780/DDP cells + cisplatin group.

  • Fig. 2 Tasquinimod promoted apoptosis in OC/DDP cells by inhibiting HDAC4. (A) Western blot analysis of the effect of Tasquinimod on HDAC4 expression. (B) CCK8 assays were used to evaluate the effect of Tasquinimod on cell viability. (C) Flow cytometry was used to detect apoptosis in SKOV3/DDP and A2780/DDP cells treated with Tasquinimod. (D, E) qRT-PCR and Western blot analyses were used to measure the expression levels of Bcl-2 and cleaved-Caspase-3 in tumor cells treated with Tasquinimod. All experiments were independently repeated three times. Tukey’s test and one-way ANOVA were used to analyze statistical significance. Values are presented as mean ± SD. OC, ovarian cancer; HDAC4, histone deacetylase 4; CCK8, cell counting kit-8; NC, negative control. *p < 0.05 vs. SKOV3/DDP + NC or A2780/DDP + NC group, #p < 0.05 vs. SKOV3/DDP or A2780/DDP group, &p < 0.05 vs. SKOV3/DDP + Tasquinimod or A2780/DDP + Tasquinimod group.

  • Fig. 3 Tasquinimod affected the cell cycle of cisplatin-resistant OC/DDP cells. (A) Flow cytometry analysis of the cell cycle in SKOV3/DDP and A2780/DDP cells after Tasquinimod treatment. (B, C) qRT-PCR and Western blot analyses of p21 expression levels in SKOV3/DDP and A2780/DDP cells after Tasquinimod treatment. All experiments were independently repeated three times. Tukey’s test and one-way ANOVA were used to analyze statistical significance. Values are presented as mean ± SD. OC, ovarian cancer; HDAC4, histone deacetylase 4; NC, negative control. *p < 0.05 vs. SKOV3/DDP + NC or A2780/DDP + NC group, #p < 0.05 vs. SKOV3/DDP or A2780/DDP group.

  • Fig. 4 Tasquinimod regulated cell cycle-related gene expression in OC/DDP cells. (A, B) qRT-PCR analysis of p21, cyclin D1, and CDK4 expression levels in SKOV3/DDP cells and A2780/DDP cells after Tasquinimod treatment. (C, D) Immunofluorescence analysis of p21, cyclin D1, and CDK4 expression levels in SKOV3/DDP cells and A2780/DDP cells after Tasquinimod treatment. Scale bars represent 25 μm. (E) CCK8 assays to verify the cell viability in SKOV3/DDP cells and A2780/DDP cells after Tasquinimod treatment. (F) Flow cytometry detection of SKOV3/DDP cell and A2780/DDP cells cycle after Tasquinimod treatment. All experiments were independently repeated six times, Turkey’s test and one-way ANOVA were used to analyze and calculate statistical significance. Values are presented as mean ± SD. OC, ovarian cancer; CCK8, cell counting kit-8; NC, negative control; IOD, integrated optical density. *p < 0.05 vs. SKOV3/DDP or A2780/DDP group, #p < 0.05 vs. SKOV3/DDP + Tas + NC or A2780/DDP + Tas + NC group, &p < 0.05 vs. SKOV3/DDP + Tas or A2780/DDP + Tas group.

  • Fig. 5 Tasquinimod promoted the anti-tumor of cisplatin in OC/DDP cells xenografts in mice. (A–C) Tumor volume and weight were measured and compared in mice after treatment with Tasquinimod combined with cisplatin. (D) Immunofluorescence analysis of HDAC4 expression levels in tumor cells in mice. (E) Western blot analysis of HDAC4, p21, cyclin D1, and CDK4 expression levels in mouse tumor tissues. (F) Flow cytometry analysis of apoptosis in tumor tissues in mice. All experiments were independently repeated three times. Tukey’s test and one-way ANOVA were used to analyze statistical significance. Values are presented as mean ± SD. OC, ovarian cancer; HDAC4, histone deacetylase 4; IOD, integrated optical density. *p < 0.05 vs. SKOV3 or A2780 group, #p < 0.05 vs. SKOV3/DDP or A2780/DDP group.


Reference

1. Kuroki L, Guntupalli SR. 2020; Treatment of epithelial ovarian cancer. BMJ. 371:m3773. DOI: 10.1136/bmj.m3773. PMID: 33168565.
Article
2. Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez JN, Barroilhet L, Behbakht K, Berchuck A, Chen LM, Chitiyo VC, Cristea M, DeRosa M, Eisenhauer EL, Gershenson DM, Gray HJ, Grisham R, Hakam A, Jain A, Karam A, Konecny GE, Leath CA III, et al. 2022; NCCN Guidelines® insights: ovarian cancer, version 3.2022. J Natl Compr Canc Netw. 20:972–980. DOI: 10.6004/jnccn.2022.0047. PMID: 36075393.
Article
3. Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F. 2018; Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med. 16:96. DOI: 10.1186/s12967-018-1471-1. PMID: 29642900. PMCID: PMC5896132.
Article
4. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C, Ferry D. 2016; Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 44:42–50. DOI: 10.1016/j.ctrv.2016.01.003. PMID: 26866673.
Article
5. Szturz P, Wouters K, Kiyota N, Tahara M, Prabhash K, Noronha V, Adelstein D, Van Gestel D, Vermorken JB. 2019; Low-dose vs. high-dose cisplatin: lessons learned from 59 chemoradiotherapy trials in head and neck cancer. Front Oncol. 9:86. DOI: 10.3389/fonc.2019.00086. PMID: 30847300. PMCID: PMC6394212.
Article
6. Makovec T. 2019; Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 53:148–158. DOI: 10.2478/raon-2019-0018. PMID: 30956230. PMCID: PMC6572495.
Article
7. Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. 2023; Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat. 68:100938. DOI: 10.1016/j.drup.2023.100938. PMID: 36774746.
Article
8. Wang N, Ma T, Yu B. 2023; Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther. 8:69. DOI: 10.1038/s41392-023-01341-7. PMID: 36797239. PMCID: PMC9935618.
Article
9. Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu X. 2018; Prognosis analysis of histone deacetylases mRNA expression in ovarian cancer patients. J Cancer. 9:4547–4555. DOI: 10.7150/jca.26780. PMID: 30519361. PMCID: PMC6277648.
Article
10. Zhang X, Qi Z, Yin H, Yang G. 2019; Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 9:1096–1114. DOI: 10.7150/thno.29673. PMID: 30867818. PMCID: PMC6401400.
Article
11. Ma Q, Xu Q, Zhao J, Zhang W, Wang Q, Fang J, Lu Z, Liu J, Ma L. 2021; Coupling HDAC4 with transcriptional factor MEF2D abrogates SPRY4-mediated suppression of ERK activation and elicits hepatocellular carcinoma drug resistance. Cancer Lett. 520:243–254. DOI: 10.1016/j.canlet.2021.07.049. PMID: 34339801.
Article
12. Yu Z, Tang H, Chen S, Xie Y, Shi L, Xia S, Jiang M, Li J, Chen D. 2023; Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy. Drug Resist Updat. 67:100915. DOI: 10.1016/j.drup.2022.100915. PMID: 36641841.
Article
13. Wang Z, Zhang Y, Zhu S, Peng H, Chen Y, Cheng Z, Liu S, Luo Y, Li R, Deng M, Xu Y, Hu G, Chen L, Zhang G. 2020; A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1- pre-B-ALL. Cell Death Dis. 11:738. DOI: 10.1038/s41419-020-02949-1. PMID: 32913188. PMCID: PMC7483467.
14. Sazonova EV, Yapryntseva MA, Pervushin NV, Tsvetcov RI, Zhivotovsky B, Kopeina GS. 2024; Cancer drug resistance: targeting proliferation or programmed cell death. Cells. 13:388. DOI: 10.3390/cells13050388. PMID: 38474352. PMCID: PMC10930385.
Article
15. Havasi A, Cainap SS, Havasi AT, Cainap C. 2023; Ovarian cancer-insights into platinum resistance and overcoming it. Medicina (Kaunas). 59:544. DOI: 10.3390/medicina59030544. PMID: 36984544. PMCID: PMC10057458.
Article
16. Huang L, Zhao L, Zhang J, He F, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, He TC, Tang L. 2021; Antiparasitic mebendazole (MBZ) effectively overcomes cisplatin resistance in human ovarian cancer cells by inhibiting multiple cancer-associated signaling pathways. Aging (Albany NY). 13:17407–17427. DOI: 10.18632/aging.203232. PMID: 34232919. PMCID: PMC8312413.
Article
17. Penny SM. 2020; Ovarian cancer: an overview. Radiol Technol. 91:561–575.
18. Ghosh S. 2019; Cisplatin: the first metal based anticancer drug. Bioorg Chem. 88:102925. DOI: 10.1016/j.bioorg.2019.102925. PMID: 31003078.
Article
19. Damia G, Broggini M. 2019; Platinum resistance in ovarian cancer: role of DNA repair. Cancers (Basel). 11:119. DOI: 10.3390/cancers11010119. PMID: 30669514. PMCID: PMC6357127.
Article
20. Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, Lv X, Li J, Chen B. 2018; Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics. 8:5200–5212. DOI: 10.7150/thno.27806. PMID: 30555541. PMCID: PMC6276088.
Article
21. Fan R, Satilmis H, Vandewalle N, Verheye E, Vlummens P, Maes A, Muylaert C, De Bruyne E, Menu E, Evans H, Chantry A, De Beule N, Hose D, Törngren M, Eriksson H, Vanderkerken K, Maes K, Breckpot K, De Veirman K. 2023; Tasquinimod suppresses tumor cell growth and bone resorption by targeting immunosuppressive myeloid cells and inhibiting c-MYC expression in multiple myeloma. J Immunother Cancer. 11:e005319. DOI: 10.1136/jitc-2022-005319. PMID: 36650020. PMCID: PMC9853259.
Article
22. Jin J, Zhang J, Bu S. 2022; Tasquinimod efficacy and S100A9 expression in glucose-treated HREC cells. Int Ophthalmol. 42:661–676. DOI: 10.1007/s10792-021-02038-y. PMID: 34796432.
Article
23. Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, Björk P, Olsson A, Björk A, Leanderson T. 2013; Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 73:1386–1399. DOI: 10.1158/0008-5472.CAN-12-2730. PMID: 23149916. PMCID: PMC3578133.
Article
24. Asfaha Y, Schrenk C, Alves Avelar LA, Hamacher A, Pflieger M, Kassack MU, Kurz T. 2019; Recent advances in class IIa histone deacetylases research. Bioorg Med Chem. 27:115087. DOI: 10.1016/j.bmc.2019.115087. PMID: 31561937.
Article
25. Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. 2023; HDAC4 in cancer: a multitasking platform to drive not only epigenetic modifications. Front Mol Biosci. 10:1116660. DOI: 10.3389/fmolb.2023.1116660. PMID: 36762207. PMCID: PMC9902726.
Article
26. Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. 2021; Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther. 220:107721. DOI: 10.1016/j.pharmthera.2020.107721. PMID: 33144118.
Article
27. Zang WJ, Hu YL, Qian CY, Feng Y, Liu JZ, Yang JL, Huang H, Zhu YZ, Xue WJ. 2022; HDAC4 promotes the growth and metastasis of gastric cancer via autophagic degradation of MEKK3. Br J Cancer. 127:237–248. DOI: 10.1038/s41416-022-01805-7. PMID: 35637410. PMCID: PMC9296555.
Article
28. Shen YF, Wei AM, Kou Q, Zhu QY, Zhang L. 2016; Histone deacetylase 4 increases progressive epithelial ovarian cancer cells via repression of p21 on fibrillar collagen matrices. Oncol Rep. 35:948–954. DOI: 10.3892/or.2015.4423. PMID: 26572940.
Article
29. Marroncelli N, Bianchi M, Bertin M, Consalvi S, Saccone V, De Bardi M, Puri PL, Palacios D, Adamo S, Moresi V. 2018; HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep. 8:3448. DOI: 10.1038/s41598-018-21835-7. PMID: 29472596. PMCID: PMC5823886.
Article
30. Huang YS, Fan QQ, Li C, Nie M, Quan HY, Wang L. 2015; Quantitative assessment the relationship between p21 rs1059234 polymorphism and cancer risk. Asian Pac J Cancer Prev. 16:4435–4438. DOI: 10.7314/APJCP.2015.16.10.4435. PMID: 26028110.
Article
31. Huang Y, Wang W, Chen Y, Huang Y, Zhang J, He S, Tan Y, Qiang F, Li A, Røe OD, Wang S, Zhou Y, Zhou J. 2014; The opposite prognostic significance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J Gastroenterol. 49:1441–1452. DOI: 10.1007/s00535-013-0900-4. PMID: 24127074.
Article
32. Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, Bischoff R, Gietema JA, de Jong S. 2010; Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 120:3594–3605. DOI: 10.1172/JCI41939. PMID: 20811155. PMCID: PMC2947220.
Article
33. Marhenke S, Buitrago-Molina LE, Endig J, Orlik J, Schweitzer N, Klett S, Longerich T, Geffers R, Sánchez Muñoz A, Dorrell C, Katz SF, Lechel A, Weng H, Krech T, Lehmann U, Dooley S, Rudolph KL, Manns MP, Vogel A. 2014; p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut. 63:1501–1512. DOI: 10.1136/gutjnl-2013-304829. PMID: 24092862.
Article
34. Spaety ME, Gries A, Badie A, Venkatasamy A, Romain B, Orvain C, Yanagihara K, Okamoto K, Jung AC, Mellitzer G, Pfeffer S, Gaiddon C. 2019; HDAC4 levels control sensibility toward cisplatin in gastric cancer via the p53-p73/BIK pathway. Cancers (Basel). 11:1747. DOI: 10.3390/cancers11111747. PMID: 31703394. PMCID: PMC6896094.
Article
35. Engeland K. 2022; Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29:946–960. DOI: 10.1038/s41418-022-00988-z. PMID: 35361964. PMCID: PMC9090780.
Article
36. Bautista L, Knippler CM, Ringel MD. 2020; p21-activated kinases in thyroid cancer. Endocrinology. 161:bqaa105. DOI: 10.1210/endocr/bqaa105. PMID: 32609833. PMCID: PMC7417880.
Article
37. Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. 2020; Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells. 12:481–487. DOI: 10.4252/wjsc.v12.i6.481. PMID: 32742565. PMCID: PMC7360995.
Article
38. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I, Monestiroli S, Gobbi A, Alcalay M, Minucci S, Pelicci PG. 2009; Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature. 457:51–56. DOI: 10.1038/nature07618. PMID: 19122635.
Article
39. Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, Liao S, Han Z, Liu R, Zhu T, Wang S, Xu G, Meng L, Zhou J, Ma D. 2011; Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 11:399. DOI: 10.1186/1471-2407-11-399. PMID: 21933447. PMCID: PMC3184122.
Article
40. Hwang JR, Kim WY, Cho YJ, Ryu JY, Choi JJ, Jeong SY, Kim MS, Kim JH, Paik ES, Lee YY, Han HD, Lee JW. 2020; Chloroquine reverses chemoresistance via upregulation of p21WAF1/CIP1 and autophagy inhibition in ovarian cancer. Cell Death Dis. 11:1034. DOI: 10.1038/s41419-020-03242-x. PMID: 33277461. PMCID: PMC7718923.
41. Wang J, Liu L. 2021; MiR-149-3p promotes the cisplatin resistance and EMT in ovarian cancer through downregulating TIMP2 and CDKN1A. J Ovarian Res. 14:165. DOI: 10.1186/s13048-021-00919-5. PMID: 34798882. PMCID: PMC8605569.
Article
42. Sun J, Chen X, Ji X, Meng S, Wang W, Wang P, Bai J, Li Z, Chen Y. 2022; TRIM21 deficiency promotes cell proliferation and tumorigenesis via regulating p21 expression in ovarian cancer. Bioengineered. 13:6024–6035. DOI: 10.1080/21655979.2022.2042134. PMID: 35226825. PMCID: PMC8973816.
Article
43. de Ridder I, Kerkhofs M, Veettil SP, Dehaen W, Bultynck G. 2021; Cancer cell death strategies by targeting Bcl-2's BH4 domain. Biochim Biophys Acta Mol Cell Res. 1868:118983. DOI: 10.1016/j.bbamcr.2021.118983. PMID: 33549704.
Article
44. Eskandari E, Eaves CJ. 2022; Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 221:e202201159. DOI: 10.1083/jcb.202201159. PMID: 35551578. PMCID: PMC9106709.
Article
45. Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. 2022; Molecular mechanisms of platinumbased chemotherapy resistance in ovarian cancer (Review). Oncol Rep. 47:82. DOI: 10.3892/or.2022.8293. PMID: 35211759. PMCID: PMC8908330.
Article
46. Herod JJ, Eliopoulos AG, Warwick J, Niedobitek G, Young LS, Kerr DJ. 1996; The prognostic significance of Bcl-2 and p53 expression in ovarian carcinoma. Cancer Res. 56:2178–2184.
47. Tai YT, Lee S, Niloff E, Weisman C, Strobel T, Cannistra SA. 1998; BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol. 16:2583–2590. Erratum. DOI: 10.1200/JCO.1998.16.8.2583. PMID: 9704707.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr