1. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. 2020; Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 126:2225–2249. DOI:
10.1002/cncr.32802. PMID:
32162336. PMCID:
PMC7299151.
Article
2. Hayashi H, Uemura N, Matsumura K, Zhao L, Sato H, Shiraishi Y, et al. 2021; Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World J Gastroenterol. 27:7480–7496. DOI:
10.3748/wjg.v27.i43.7480. PMID:
34887644. PMCID:
PMC8613738.
Article
3. Mangano A, Valle V, Dreifuss NH, Aguiluz G, Masrur MA. 2020; Role of artificial intelligence (AI) in surgery: introduction, general principles, and potential applications. Surg Technol Int. 38:17–21. DOI:
10.52198/21.STI.38.SO1369. PMID:
33370842.
Article
4. Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara K, et al. 2020; Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery. J Gastrointest Surg. 24:1843–1851. DOI:
10.1007/s11605-019-04338-2. PMID:
31385172.
Article
5. Radi I, Tellez JC, Alterio RE, Scott DJ, Sankaranarayanan G, Nagaraj MB, et al. 2022; Feasibility, effectiveness and transferability of a novel mastery-based virtual reality robotic training platform for general surgery residents. Surg Endosc. 36:7279–7287. DOI:
10.1007/s00464-022-09106-z. PMID:
35194662. PMCID:
PMC8863393.
Article
6. Miyamoto R, Takahashi A, Ogasawara A, Ogura T, Kitamura K, Ishida H, et al. 2022; Three-dimensional simulation of the pancreatic parenchyma, pancreatic duct and vascular arrangement in pancreatic surgery using a deep learning algorithm. PLoS One. 17:e0276600. DOI:
10.1371/journal.pone.0276600. PMID:
36306322. PMCID:
PMC9616217.
7. Cardobi N, Dal Palù A, Pedrini F, Beleù A, Nocini R, De Robertis R, et al. 2021; An overview of artificial intelligence applications in liver and pancreatic imaging. Cancers (Basel). 13:2162. DOI:
10.3390/cancers13092162. PMID:
33946223. PMCID:
PMC8124771.
Article
8. Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, et al. 2023; Risk assessment and pancreatic cancer: diagnostic management and artificial intelligence. Cancers (Basel). 15:351. DOI:
10.3390/cancers15020351. PMID:
36672301. PMCID:
PMC9857317.
Article
10. Kambakamba P, Mannil M, Herrera PE, Müller PC, Kuemmerli C, Linecker M, et al. 2020; The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery. 167:448–454. DOI:
10.1016/j.surg.2019.09.019. PMID:
31727325.
Article
11. Wagner M, Brandenburg JM, Bodenstedt S, Schulze A, Jenke AC, Stern A, et al. 2022; Surgomics: personalized prediction of morbidity, mortality and long-term outcome in surgery using machine learning on multimodal data. Surg Endosc. 36:8568–8591. DOI:
10.1007/s00464-022-09611-1. PMID:
36171451. PMCID:
PMC9613751.
Article
12. Ramalhinho J, Yoo S, Dowrick T, Koo B, Somasundaram M, Gurusamy K, et al. 2023; The value of augmented reality in surgery - a usability study on laparoscopic liver surgery. Med Image Anal. 90:102943. DOI:
10.1016/j.media.2023.102943. PMID:
37703675. PMCID:
PMC10958137.
Article
13. Fujinaga A, Endo Y, Etoh T, Kawamura M, Nakanuma H, Kawasaki T, et al. 2023; Development of a cross-artificial intelligence system for identifying intraoperative anatomical landmarks and surgical phases during laparoscopic cholecystectomy. Surg Endosc. 37:6118–6128. DOI:
10.1007/s00464-023-10097-8. PMID:
37142714.
Article
14. Jearanai S, Wangkulangkul P, Sae-Lim W, Cheewatanakornkul S. 2023; Development of a deep learning model for safe direct optical trocar insertion in minimally invasive surgery: an innovative method to prevent trocar injuries. Surg Endosc. 37:7295–7304. DOI:
10.1007/s00464-023-10309-1. PMID:
37558826.
Article
15. Han IW, Cho K, Ryu Y, Shin SH, Heo JS, Choi DW, et al. 2020; Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World J Gastroenterol. 26:4453–4464. DOI:
10.3748/wjg.v26.i30.4453. PMID:
32874057. PMCID:
PMC7438201.
Article
16. Palumbo D, Mori M, Prato F, Crippa S, Belfiori G, Reni M, et al. 2021; Prediction of early distant recurrence in upfront resectable pancreatic adenocarcinoma: a multidisciplinary, machine learning-based approach. Cancers (Basel). 13:4938. DOI:
10.3390/cancers13194938. PMID:
34638421. PMCID:
PMC8508250.
Article
17. Kuemmerli C, Rössler F, Berchtold C, Frey MC, Studier-Fischer A, Cizmic A, et al. 2023; Artificial intelligence in pancreatic surgery: current applications. J Pancreatol. 6:74–81. DOI:
10.1097/JP9.0000000000000129.
Article
18. Sotiropoulou M, Mulita F, Verras GI, Schizas D, Papalampros A, Tchabashvili L, et al. 2021; A novel tool for visualization and detection of pancreatic neuroendocrine tumours. A 'fluorescent' world is calling for exploration? Prz Menopauzalny. 20:207–210. DOI:
10.5114/pm.2021.110834. PMID:
35069073. PMCID:
PMC8764961.
Article
19. Amirkhani G, Farahmand F, Yazdian SM, Mirbagheri A. 2020; An extended algorithm for autonomous grasping of soft tissues during robotic surgery. Int J Med Robot. 16:1–15. DOI:
10.1002/rcs.2122. PMID:
32390288.
Article