1. Koliaki C, Dalamaga M, Liatis S. Update on the obesity epidemic: after the sudden rise, is the upward trajectory beginning to flatten? Curr Obes Rep. 2023; 12:514–527. PMID:
37779155.
Article
3. Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, Willett WC, Hu FB. Determinants and consequences of obesity. Am J Public Health. 2016; 106:1656–1662. PMID:
27459460.
Article
4. Feng S, Wang Y. Citrus phytochemicals and their potential effects on the prevention and treatment of obesity: review and progress of the past 10 years. J Food Bioact. 2018; 4:99–106.
Article
5. Shim D, Kim HJ, Lee J, Lee YM, Park JW, Yang S, Lee GH, Chung MJ, Chae HJ.
Citrus junos Tanaka peel extract ameliorates HDM-induced lung inflammation and immune responses
in vivo. Nutrients. 2022; 14:5024. PMID:
36501052.
Article
6. Hirota R, Roger NN, Nakamura H, Song HS, Sawamura M, Suganuma N. Anti-inflammatory effects of limonene from yuzu (
Citrus junos Tanaka) essential oil on eosinophils. J Food Sci. 2010; 75:H87–H92. PMID:
20492298.
7. Bharti S, Rani N, Krishnamurthy B, Arya DS. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med. 2014; 80:437–451. PMID:
24710903.
Article
8. Dosoky NS, Setzer WN. Biological activities and safety of Citrus spp. essential oils. Int J Mol Sci. 2018; 19:1966. PMID:
29976894.
Article
9. Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front Endocrinol (Lausanne). 2021; 12:779638. PMID:
34887836.
Article
10. Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact. 2016; 243:1–9. PMID:
26612654.
Article
11. Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res. 2011; 60:483–491. PMID:
21181230.
Article
12. Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: an update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022; 104:108967. PMID:
35189328.
Article
13. Shin Y. Correlation between antioxidant concentrations and activities of Yuja (Citrus junos Sieb ex Tanaka) and other citrus fruit. Food Sci Biotechnol. 2012; 21:1477–1482.
Article
14. Lee MK, Yoon JY, Lee HI. Comparison of the preadipocyte differentiation inhibitory effects and antioxidant activities of immature and mature yuzu peel hot water extracts
in vitro. J Korean Soc Food Sci Nutr. 2023; 52:1005–1012.
Article
15. Kim SH, Shin EJ, Hur HJ, Park JH, Sung MJ, Kwon DY, Hwang JT. Citrus junos Tanaka peel extract attenuates experimental colitis and inhibits tumour growth in a mouse xenograft model. J Funct Foods. 2014; 8:301–308.
Article
16. Hwang JT, Shin EJ. Ethanol extract of Citrus junos Tanaka exerts hypocholesterolemic effect in mice fed a high cholesterol diet. Atherosclerosis. 2015; 241:e195.
Article
17. Kim SH, Hur HJ, Yang HJ, Kim HJ, Kim MJ, Park JH, Sung MJ, Kim MS, Kwon DY, Hwang JT. Citrus junos Tanaka peel extract exerts antidiabetic effects via AMPK and PPAR-γ both
in vitro and
in vivo in mice fed a high-fat diet. Evid Based Complement Alternat Med. 2013; 2013:921012. PMID:
23762167.
18. Zang L, Shimada Y, Kawajiri J, Tanaka T, Nishimura N. Effects of Yuzu (Citrus junos Siebold ex Tanaka) peel on the diet-induced obesity in a zebrafish model. J Funct Foods. 2014; 10:499–510.
Article
19. Kim S, Choi SY, Lee HI, Lee MK. Protective responses of green Yuja peel extracts to lipopolysaccharide-induced inflammation and reactive oxygen species production in RAW264.7 Cells. Prev Nutr Food Sci. 2024; 29:301–310. PMID:
39371517.
Article
20. Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement Altern Med. 2012; 12:31. PMID:
22471389.
Article
21. Seong HJ, Kim H, Cho JY, Yang KY, Nam SH. Modulating flavanone compound for reducing the bitterness and improving dietary fiber, physicochemical properties, and anti-adipogenesis of green yuzu powder by enzymatic hydrolysis. Food Chem X. 2024; 22:101329. PMID:
38623509.
Article
22. Haider N, Larose L. Harnessing adipogenesis to prevent obesity. Adipocyte. 2019; 8:98–104. PMID:
30848691.
Article
23. Kuptawach K, Noitung S, Buakeaw A, Puthong S, Sawangkeaw R, Sangtanoo P, Srimongkol P, Reamtong O, Choowongkomon K, Karnchanatat A. Lemon basil seed-derived peptide: Hydrolysis, purification, and its role as a pancreatic lipase inhibitor that reduces adipogenesis by downregulating SREBP-1c and PPAR-γ in 3T3-L1 adipocytes. PLoS One. 2024; 19:e0301966. PMID:
38776280.
Article
24. Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol. 2010; 45:199–214. PMID:
20218765.
25. Meegalla RL, Billheimer JT, Cheng D. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun. 2002; 298:317–323. PMID:
12413942.
Article
26. Savova MS, Mihaylova LV, Tews D, Wabitsch M, Georgiev MI. Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother. 2023; 159:114244. PMID:
36638594.
Article
27. Macek P, Biskup M, Terek-Derszniak M, Stachura M, Krol H, Gozdz S, Zak M. Optimal body fat percentage cut-off values in predicting the obesity-related cardiovascular risk factors: a cross-sectional cohort study. Diabetes Metab Syndr Obes. 2020; 13:1587–1597. PMID:
32494175.
28. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011; 121:2094–2101. PMID:
21633177.
Article
29. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014; 156:20–44. PMID:
24439368.
Article
30. Ritchie SA, Connell JMC. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007; 17:319–326. PMID:
17110092.
Article
31. Mathieu P. Abdominal obesity and the metabolic syndrome: a surgeon’s perspective. Can J Cardiol. 2008; 24(Suppl D):19D–23D.
Article
32. Busetto L. Visceral obesity and the metabolic syndrome: effects of weight loss. Nutr Metab Cardiovasc Dis. 2001; 11:195–204. PMID:
11590996.
33. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013; 5:1218–1240. PMID:
23584084.
Article
34. Paccaud F, Schlüter-Fasmeyer V, Wietlisbach V, Bovet P. Dyslipidemia and abdominal obesity: an assessment in three general populations. J Clin Epidemiol. 2000; 53:393–400. PMID:
10785570.
35. Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, Zhou NJ, Xie J, Jiang H. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys. 2012; 518:61–70. PMID:
22198281.
Article
36. Xiong H, Wang J, Ran Q, Lou G, Peng C, Gan Q, Hu J, Sun J, Yao R, Huang Q. Hesperidin: a therapeutic agent for obesity. Drug Des Devel Ther. 2019; 13:3855–3866.
37. Alam MA, Kauter K, Brown L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients. 2013; 5:637–650. PMID:
23446977.
Article