3. Cha Y, Han MJ, Cha HJ, et al. 2017; Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 19:445–456. DOI:
10.1038/ncb3517. PMID:
28436968. PMCID:
PMC5545746.
4. Kim KT, Oh JY, Park S, et al. 2022; Live isolation of naïve ESCs via distinct glucose metabolism and stored glycogen. Metab Eng. 72:97–106. DOI:
10.1016/j.ymben.2022.03.003. PMID:
35283260.
6. Koo KM, Go YH, Kim SM, et al. 2023; Label-free and non-destructive identification of naïve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials. 293:121939. DOI:
10.1016/j.biomaterials.2022.121939. PMID:
36521427.
7. Kumar B, Elsässer SJ. 2019; Quantitative multiplexed ChIP reveals global alterations that shape promoter bivalency in ground state embryonic stem cells. Cell Rep. 28:3274–3284.e5. DOI:
10.1016/j.celrep.2019.08.046. PMID:
31533047. PMCID:
PMC6859498.
8. Kumar B, Navarro C, Winblad N, et al. 2022; Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation. Nat Cell Biol. 24:845–857. DOI:
10.1038/s41556-022-00916-w. PMID:
35637409. PMCID:
PMC9203276.
9. Cho SJ, Kim KT, Kim JS, et al. 2018; A fluorescent chemical probe CDy9 selectively stains and enables the isolation of live naïve mouse embryonic stem cells. Biomaterials. 180:12–23. DOI:
10.1016/j.biomaterials.2018.07.007. PMID:
30014963.
10. Kinoshita M, Smith A. 2018; Pluripotency deconstructed. Dev Growth Differ. 60:44–52. DOI:
10.1111/dgd.12419. PMID:
29359419.
12. Weinberger L, Ayyash M, Novershtern N, Hanna JH. 2016; Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 17:155–169. DOI:
10.1038/nrm.2015.28. PMID:
26860365.
15. Huyghe A, Furlan G, Ozmadenci D, et al. 2020; Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nat Cell Biol. 22:389–400. DOI:
10.1038/s41556-020-0483-2. PMID:
32231305.
16. Cheng JG, Chen JR, Hernandez L, Alvord WG, Stewart CL. 2001; Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci U S A. 98:8680–8685. DOI:
10.1073/pnas.151180898. PMID:
11438698. PMCID:
PMC37495.
17. Brons IG, Smithers LE, Trotter MW, et al. 2007; Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 448:191–195. DOI:
10.1038/nature05950. PMID:
17597762.
18. Tesar PJ, Chenoweth JG, Brook FA, et al. 2007; New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 448:196–199. DOI:
10.1038/nature05972. PMID:
17597760.
19. Cha Y, Moon BH, Lee MO, et al. 2010; Zap70 functions to maintain stemness of mouse embryonic stem cells by negatively regulating Jak1/Stat3/c-Myc signaling. Stem Cells. 28:1476–1486. DOI:
10.1002/stem.470. PMID:
20641039. PMCID:
PMC3164580.
20. Niwa H, Burdon T, Chambers I, Smith A. 1998; Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12:2048–2060. DOI:
10.1101/gad.12.13.2048. PMID:
9649508. PMCID:
PMC316954.
21. van Oosten AL, Costa Y, Smith A, Silva JC. 2012; JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nat Commun. 3:817. DOI:
10.1038/ncomms1822. PMID:
22569365. PMCID:
PMC3567838.
22. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. 2002; Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 285:1–24. DOI:
10.1016/S0378-1119(02)00398-0. PMID:
12039028.
23. Chan AC, Iwashima M, Turck CW, Weiss A. 1992; ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 71:649–662. DOI:
10.1016/0092-8674(92)90598-7. PMID:
1423621.
24. Cha Y, Park KS. 2010; SHP2 is a downstream target of ZAP70 to regulate JAK1/STAT3 and ERK signaling pathways in mouse embryonic stem cells. FEBS Lett. 584:4241–4246. DOI:
10.1016/j.febslet.2010.09.016. PMID:
20846526.
25. Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T. 1996; Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol. 16:6985–6992. DOI:
10.1128/MCB.16.12.6985. PMID:
8943354. PMCID:
PMC231702.
26. Feng GS. 2007; Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res. 17:37–41. DOI:
10.1038/sj.cr.7310140. PMID:
17211446.
27. Kim SM, Kwon EJ, Kim YJ, et al. 2022; Dichotomous role of Shp2 for naïve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Res Ther. 13:329. DOI:
10.1186/s13287-022-02976-z. PMID:
35850773. PMCID:
PMC9290224.
28. Burdon T, Stracey C, Chambers I, Nichols J, Smith A. 1999; Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol. 210:30–43. DOI:
10.1006/dbio.1999.9265. PMID:
10364425.
29. Shimizu T, Ueda J, Ho JC, et al. 2012; Dual inhibition of Src and GSK3 maintains mouse embryonic stem cells, whose differentiation is mechanically regulated by Src signaling. Stem Cells. 30:1394–1404. DOI:
10.1002/stem.1119. PMID:
22553165.
30. Li Z, Fei T, Zhang J, et al. 2012; BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell. 10:171–182. DOI:
10.1016/j.stem.2011.12.016. PMID:
22305567.
31. Dance M, Montagner A, Salles JP, Yart A, Raynal P. 2008; The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal. 20:453–459. DOI:
10.1016/j.cellsig.2007.10.002. PMID:
17993263.
33. Kim SH, Kim MO, Cho YY, et al. 2014; ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res. 13:1–11. DOI:
10.1016/j.scr.2014.04.001. PMID:
24793005.
34. Dhaliwal NK, Miri K, Davidson S, Tamim El Jarkass H, Mitchell JA. 2018; KLF4 nuclear export requires ERK activation and initiates exit from naive pluripotency. Stem Cell Reports. 10:1308–1323. DOI:
10.1016/j.stemcr.2018.02.007. PMID:
29526737. PMCID:
PMC6000723.
35. Hamilton WB, Brickman JM. 2014; Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm. Cell Rep. 9:2056–2070. DOI:
10.1016/j.celrep.2014.11.032. PMID:
25533345.
36. Nichols J, Silva J, Roode M, Smith A. 2009; Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development. 136:3215–3222. DOI:
10.1242/dev.038893. PMID:
19710168. PMCID:
PMC2739140.
37. Cheng AM, Saxton TM, Sakai R, et al. 1998; Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell. 95:793–803. DOI:
10.1016/S0092-8674(00)81702-X. PMID:
9865697.
38. Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. 1998; Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A. 95:5082–5087. DOI:
10.1073/pnas.95.9.5082. PMID:
9560232. PMCID:
PMC20217.
39. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. 1995; Requirement of FGF-4 for postimplantation mouse development. Science. 267:246–249. DOI:
10.1126/science.7809630. PMID:
7809630.
40. Yang W, Klaman LD, Chen B, et al. 2006; An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell. 10:317–327. DOI:
10.1016/j.devcel.2006.01.002. PMID:
16516835.
41. Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. 2020; FGF signaling pathway: a key regulator of stem cell pluripotency. Front Cell Dev Biol. 8:79. DOI:
10.3389/fcell.2020.00079. PMID:
32133359. PMCID:
PMC7040165.
42. Simon CS, Rahman S, Raina D, Schröter C, Hadjantonakis AK. 2020; Live visualization of ERK activity in the mouse blastocyst reveals lineage-specific signaling dynamics. Dev Cell. 55:341–353.e5. DOI:
10.1016/j.devcel.2020.09.030. PMID:
33091370. PMCID:
PMC7658048.
43. Lanner F, Rossant J. 2010; The role of FGF/Erk signaling in pluripotent cells. Development. 137:3351–3360. DOI:
10.1242/dev.050146. PMID:
20876656.
45. Theunissen TW, Powell BE, Wang H, et al. 2014; Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. 15:524–526. Erratum for: Cell Stem Cell 2014;15:471-487. DOI:
10.1016/j.stem.2014.09.003. PMID:
28903030. PMCID:
PMC4534765.
46. Carbognin E, Betto RM, Soriano ME, Smith AG, Martello G. 2016; Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO J. 35:618–634. DOI:
10.15252/embj.201592629. PMID:
26903601. PMCID:
PMC4801951.
47. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. 2008; Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22:746–755. DOI:
10.1101/gad.1642408. PMID:
18347094. PMCID:
PMC2275428.
48. Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M. 2007; Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 104:5668–5673. DOI:
10.1073/pnas.0701331104. PMID:
17372190. PMCID:
PMC1838514.
49. ten Berge D, Kurek D, Blauwkamp T, et al. 2011; Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol. 13:1070–1075. DOI:
10.1038/ncb2314. PMID:
21841791. PMCID:
PMC4157727.
50. Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ. 2010; Canonical Wnt/β-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells. 28:1794–1804. DOI:
10.1002/stem.502. PMID:
20734354. PMCID:
PMC2996860.
51. Faunes F, Hayward P, Descalzo SM, et al. 2013; A membrane-associated β-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development. 140:1171–1183. DOI:
10.1242/dev.085654. PMID:
23444350. PMCID:
PMC3585656.
52. Folmes CD, Terzic A. 2014; Metabolic determinants of embryonic development and stem cell fate. Reprod Fertil Dev. 27:82–88. DOI:
10.1071/RD14383. PMID:
25472047. PMCID:
PMC4444364.
53. Kaneko KJ. 2016; Metabolism of preimplantation embryo development: a bystander or an active participant? Curr Top Dev Biol. 120:259–310. DOI:
10.1016/bs.ctdb.2016.04.010. PMID:
27475855.
54. Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. 2020; Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol. 8:87. DOI:
10.3389/fcell.2020.00087. PMID:
32181250. PMCID:
PMC7059177.
55. Brown JJ, Whittingham DG. 1991; The roles of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice
in vitro. Development. 112:99–105. DOI:
10.1242/dev.112.1.99. PMID:
1769345.
56. Vander Heiden MG, Cantley LC, Thompson CB. 2009; Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029–1033. DOI:
10.1126/science.1160809. PMID:
19460998. PMCID:
PMC2849637.
57. Waisman A, Sevlever F, Elías Costa M, et al. 2019; Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci Rep. 9:8051. DOI:
10.1038/s41598-019-44537-0. PMID:
31142785. PMCID:
PMC6541595.
59. Kim H, Jang H, Kim TW, et al. 2015; Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 33:2699–2711. DOI:
10.1002/stem.2073. PMID:
26059508.
60. Lee J, Kim HK, Han YM, Kim J. 2008; Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 40:1043–1054. DOI:
10.1016/j.biocel.2007.11.009. PMID:
18191611.
61. Sone M, Morone N, Nakamura T, et al. 2017; Hybrid cellular metabolism coordinated by Zic3 and Esrrb synergistically enhances induction of naive pluripotency. Cell Metab. 25:1103–1117.e6. DOI:
10.1016/j.cmet.2017.04.017. PMID:
28467928.
62. Zhang J, Ratanasirintrawoot S, Chandrasekaran S, et al. 2016; LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 19:66–80. DOI:
10.1016/j.stem.2016.05.009. PMID:
27320042.
63. Thomson JL, Brinster RL. 1966; Glycogen content of preimplantation mouse embryos. Anat Rec. 155:97–102. DOI:
10.1002/ar.1091550111. PMID:
4164096.
64. Hardie DG, Ross FA, Hawley SA. 2012; AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. DOI:
10.1038/nrm3311. PMID:
22436748. PMCID:
PMC5726489.
65. Chirala SS, Chang H, Matzuk M, et al. 2003; Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A. 100:6358–6363. DOI:
10.1073/pnas.0931394100. PMID:
12738878. PMCID:
PMC164451.
66. Wang L, Zhang T, Wang L, et al. 2017; Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J. 36:1330–1347. DOI:
10.15252/embj.201695417. PMID:
28377463. PMCID:
PMC5430220.
67. Tanosaki S, Tohyama S, Fujita J, et al. 2020; Fatty acid synthesis is indispensable for survival of human pluripotent stem cells. iScience. 23:101535. DOI:
10.1016/j.isci.2020.101535. PMID:
33083764. PMCID:
PMC7509212.
68. Yan H, Malik N, Kim YI, et al. 2021; Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. EMBO Rep. 22:e52122. DOI:
10.15252/embr.202052122. PMID:
33950553. PMCID:
PMC8183408.
69. Cornacchia D, Zhang C, Zimmer B, et al. 2019; Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell. 25:120–136.e10. DOI:
10.1016/j.stem.2019.05.001. PMID:
31155483. PMCID:
PMC7549840.
70. Zhong L, Gordillo M, Wang X, et al. 2023; Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells. Protein Cell. 14:591–602. DOI:
10.1093/procel/pwad008. PMID:
37029701. PMCID:
PMC10392030.
71. Yanes O, Clark J, Wong DM, et al. 2010; Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol. 6:411–417. DOI:
10.1038/nchembio.364. PMID:
20436487. PMCID:
PMC2873061.
72. Sperber H, Mathieu J, Wang Y, et al. 2015; The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 17:1523–1535. DOI:
10.1038/ncb3264. PMID:
26571212. PMCID:
PMC4662931.
73. Ben-David U, Gan QF, Golan-Lev T, et al. 2013; Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 12:167–179. DOI:
10.1016/j.stem.2012.11.015. PMID:
23318055.
74. Mannully CT, Bruck-Haimson R, Zacharia A, et al. 2022; Lipid desaturation regulates the balance between self-renewal and differentiation in mouse blastocyst-derived stem cells. Cell Death Dis. 13:1027. DOI:
10.1038/s41419-022-05263-0. PMID:
36477438. PMCID:
PMC9729213.
75. Prieto J, García-Cañaveras JC, León M, et al. 2021; c-MYC triggers lipid remodelling during early somatic cell reprogramming to pluripotency. Stem Cell Rev Rep. 17:2245–2261. DOI:
10.1007/s12015-021-10239-2. PMID:
34476741. PMCID:
PMC8599373.
76. Kim MK, Park JK, Paek SK, et al. 2018; Effects and pregnancy outcomes of L-carnitine supplementation in culture media for human embryo development from
in vitro fertilization. J Obstet Gynaecol Res. 44:2059–2066. DOI:
10.1111/jog.13763. PMID:
30066982.
77. Carrillo-González DF, Maldonado-Estrada JG. 2020; L-carnitine supplementation in culture media improves the pregnancy rate of
in vitro produced embryos with sexed semen from Bos taurus indicus cows. Trop Anim Health Prod. 52:2559–2565. DOI:
10.1007/s11250-020-02281-y. PMID:
32440939.
78. Krisher RL, Prather RS. 2012; A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 79:311–320. DOI:
10.1002/mrd.22037. PMID:
22431437. PMCID:
PMC3328638.
79. Simmet K, Zakhartchenko V, Wolf E. 2018; Comparative aspects of early lineage specification events in mammalian embryos - insights from reverse genetics studies. Cell Cycle. 17:1688–1695. DOI:
10.1080/15384101.2018.1496747. PMID:
29995579. PMCID:
PMC6133330.
81. Tohyama S, Fujita J, Hishiki T, et al. 2016; Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab. 23:663–674. DOI:
10.1016/j.cmet.2016.03.001. PMID:
27050306.
82. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 2015; Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 518:413–416. DOI:
10.1038/nature13981. PMID:
25487152. PMCID:
PMC4336218.
83. Zhou W, Choi M, Margineantu D, et al. 2012; HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31:2103–2116. DOI:
10.1038/emboj.2012.71. PMID:
22446391. PMCID:
PMC3343469.
84. Martello G, Sugimoto T, Diamanti E, et al. 2012; Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell. 11:491–504. Erratum in: Cell Stem Cell 2013;12:630. DOI:
10.1016/j.stem.2012.06.008. PMID:
23040478. PMCID:
PMC3465555.
85. Stirparo GG, Kurowski A, Yanagida A, et al. 2021; OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proc Natl Acad Sci U S A. 118:e2008890118. DOI:
10.1073/pnas.2008890118. PMID:
33452132. PMCID:
PMC7826362.
86. Moussaieff A, Rouleau M, Kitsberg D, et al. 2015; Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21:392–402. DOI:
10.1016/j.cmet.2015.02.002. PMID:
25738455.
90. Io S, Kabata M, Iemura Y, et al. 2021; Capturing human trophoblast development with naive pluripotent stem cells
in vitro. Cell Stem Cell. 28:1023–1039.e13. DOI:
10.1016/j.stem.2021.03.013. PMID:
33831365.
91. Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM. 2019; Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development. 146:dev180620. DOI:
10.1242/dev.180620. PMID:
31740534.
92. Pham TXA, Panda A, Kagawa H, et al. 2022; Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 29:1346–1365.e10. DOI:
10.1016/j.stem.2022.08.001. PMID:
36055191. PMCID:
PMC9438972.
94. Moris N, Anlas K, van den Brink SC, et al. 2020; An
in vitro model of early anteroposterior organization during human development. Nature. 582:410–415. DOI:
10.1038/s41586-020-2383-9. PMID:
32528178.
95. Liu L, Oura S, Markham Z, et al. 2023; Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell. 186:3776–3792.e16. DOI:
10.1016/j.cell.2023.07.018. PMID:
37478861.
97. Weatherbee BAT, Gantner CW, Iwamoto-Stohl LK, et al. 2023; Pluripotent stem cell-derived model of the post-implantation human embryo. Nature. 622:584–593. Erratum in: Nature 2023;621:E30. DOI:
10.1038/s41586-023-06368-y. PMID:
37369347. PMCID:
PMC10584688.
98. Yamanaka Y, Hamidi S, Yoshioka-Kobayashi K, et al. 2023; Reconstituting human somitogenesis
in vitro. Nature. 614:509–520. DOI:
10.1038/s41586-022-05649-2. PMID:
36543322.