Korean J Orthod.  2025 Jan;55(1):26-36. 10.4041/kjod24.136.

Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases

Affiliations
  • 1State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
  • 2Discipline of Orthodontics, Department of Oral Sciences, University of Otago, Dunedin, New Zealand
  • 3Department of Stomatology, Chengdu Seventh People’s Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
  • 4Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University, Fukuoka, Japan
  • 5Department of Orthodontics and Dentofacial Orthopedics, College of Dentistry, Thamar University, Dhamar, Yemen
  • 6State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China

Abstract


Objective
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54). However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.

Keyword

Temporary anchorage device; Apical root resorption; Incisor; Orthodontic extraction

Figure

  • Figure 1 Mechanical set-up for A, non-TAD; B, P-TADs; C, AP-TADs. TAD, temporary anchorage device; P-TADs, two posterior miniscrews only; AP-TADs, two anterior and two posterior miniscrews combined.

  • Figure 2 A, Construction of FH plane, PP and MSP. B, Linear and angular measurements are projected onto the MSP. FH, Frankfurt Horizontal; MSP, mid-sagittal plane; PP, palatal plane.

  • Figure 3 Measurements of dehiscence and pulp chamber. A, The size of a dehiscence was defined as the linear distance from alveolar crest to cementoenamel junction. B, Middle sagittal slice of U1 was located, where cross-sectional area was obtained in C.

  • Figure 4 Root resorption in modified Malmgren’s grade. Means not sharing superscripts differ significantly at α = 0.05 level as indicated by Bonferroni post-hoc comparison after Fisher’s exact test. TAD, temporary anchorage device; P-TADs, two posterior miniscrews only; AP-TADs, two anterior and two posterior miniscrews combined.

  • Figure 5 Decision tree for managing maxillary incisors requiring retraction and intrusion based on pre-treatment root length. IPO, incisor position objective; CBCT, cone-beam computed tomography; ARR, apical root resorption.


Reference

References

1. Felicita AS, Khader SA. 2024; Comparison of two treatment protocols for intrusion and retraction of maxillary anterior teeth using mini-implants: a prospective clinical trial. J Orofac Orthop. 85:13–29. https://doi.org/10.1007/s00056-022-00394-7. DOI: 10.1007/s00056-022-00394-7. PMID: 35482028.
Article
2. Alteneiji M, Joung-Lin Liaw J, Vaid NR, Ferguson DJ, Makki L. 2018; Treatment of VME using extra-alveolar TADs: quantification of treatment effects. Semin Orthod. 24:123–34. https://doi.org/10.1053/j.sodo.2018.01.011. DOI: 10.1053/j.sodo.2018.01.011.
Article
3. Wang XD, Zhang JN, Liu DW, Lei FF, Zhou YH. 2016; Nonsurgical correction of a severe anterior deep overbite accompanied by a gummy smile and posterior scissor bite using a miniscrew-assisted straight-wire technique in an adult high-angle case. Korean J Orthod. 46:253–65. https://doi.org/10.4041/kjod.2016.46.4.253. DOI: 10.4041/kjod.2016.46.4.253. PMID: 27478802. PMCID: PMC4965596.
Article
4. Paredes-Gallardo V, Bellot-Arcís C, García-Sanz V. 2020; Miniscrew mechanics for molar distalization and incisor intrusion in a patient with a Class II brachyfacial pattern and gummy smile. Am J Orthod Dentofacial Orthop. 158:273–85. https://doi.org/10.1016/j.ajodo.2019.04.038. DOI: 10.1016/j.ajodo.2019.04.038. PMID: 32620481.
Article
5. Wang XD, Zhang JN, Liu DW, Lei FF, Liu WT, Song Y, et al. 2017; Nonsurgical correction using miniscrew-assisted vertical control of a severe high angle with mandibular retrusion and gummy smile in an adult. Am J Orthod Dentofacial Orthop. 151:978–88. https://doi.org/10.1016/j.ajodo.2016.04.034. DOI: 10.1016/j.ajodo.2016.04.034. PMID: 28457276.
Article
6. Atik E, Gorucu-Coskuner H, Akarsu-Guven B, Taner T. 2018; Evaluation of changes in the maxillary alveolar bone after incisor intrusion. Korean J Orthod. 48:367–76. https://doi.org/10.4041/kjod.2018.48.6.367. DOI: 10.4041/kjod.2018.48.6.367. PMID: 30450329. PMCID: PMC6234111.
Article
7. Ohnishi H, Yagi T, Yasuda Y, Takada K. 2005; A mini-implant for orthodontic anchorage in a deep overbite case. Angle Orthod. 75:444–52. https://pubmed.ncbi.nlm.nih.gov/15898387/.
8. Kim TW, Kim H, Lee SJ. 2006; Correction of deep overbite and gummy smile by using a mini-implant with a segmented wire in a growing Class II Division 2 patient. Am J Orthod Dentofacial Orthop. 130:676–85. https://doi.org/10.1016/j.ajodo.2005.07.013. DOI: 10.1016/j.ajodo.2005.07.013. PMID: 17110268.
Article
9. Park HS, Yoon DY, Park CS, Jeoung SH. 2008; Treatment effects and anchorage potential of sliding mechanics with titanium screws compared with the Tweed-Merrifield technique. Am J Orthod Dentofacial Orthop. 133:593–600. https://doi.org/10.1016/j.ajodo.2006.02.041. DOI: 10.1016/j.ajodo.2006.02.041. PMID: 18405824.
Article
10. Lin JC, Liou EJ, Bowman SJ. 2010; Simultaneous reduction in vertical dimension and gummy smile using miniscrew anchorage. J Clin Orthod. 44:157–70. https://pubmed.ncbi.nlm.nih.gov/20575317/.
11. Liou EJ, Chang PM. 2010; Apical root resorption in orthodontic patients with en-masse maxillary anterior retraction and intrusion with miniscrews. Am J Orthod Dentofacial Orthop. 137:207–12. https://doi.org/10.1016/j.ajodo.2008.02.027. DOI: 10.1016/j.ajodo.2008.02.027. PMID: 20152676.
Article
12. Barros SE, Janson G, Chiqueto K, Baldo VO, Baldo TO. 2017; Root resorption of maxillary incisors retracted with and without skeletal anchorage. Am J Orthod Dentofacial Orthop. 151:397–406. https://doi.org/10.1016/j.ajodo.2016.06.048. DOI: 10.1016/j.ajodo.2016.06.048. PMID: 28153170.
Article
13. Bellini-Pereira SA, Almeida J, Aliaga-Del Castillo A, Dos Santos CCO, Henriques JFC, Janson G. 2021; Evaluation of root resorption following orthodontic intrusion: a systematic review and meta-analysis. Eur J Orthod. 43:432–41. https://doi.org/10.1093/ejo/cjaa054. DOI: 10.1093/ejo/cjaa054. PMID: 32968763.
Article
14. Ito A, Mayama A, Oyanagi T, Ogura H, Seiryu M, Fukunaga T, et al. 2023; Three-dimensional morphologic analysis of the maxillary alveolar bone after anterior tooth retraction with temporary anchorage devices. Angle Orthod. 93:667–74. https://doi.org/10.2319/120122-827.1. DOI: 10.2319/120122-827.1. PMID: 37922391. PMCID: PMC10633794.
Article
15. Venkatesh S, Ajmera S, Ganeshkar SV. 2014; Volumetric pulp changes after orthodontic treatment determined by cone-beam computed tomography. J Endod. 40:1758–63. https://doi.org/10.1016/j.joen.2014.07.029. DOI: 10.1016/j.joen.2014.07.029. PMID: 25224263.
Article
16. El Namrawy MM, Sharaby FE, Bushnak M. 2019; Intrusive arch versus miniscrew-supported intrusion for deep bite correction. Open Access Maced J Med Sci. 7:1841–6. https://doi.org/10.3889/oamjms.2019.332. DOI: 10.3889/oamjms.2019.332. PMID: 31316671. PMCID: PMC6614265.
Article
17. Verma P, Jain RK. 2020; Intrusion effects on maxillary anteriors using mini implant anchorage and K-Sir loop in subjects with deep overbite- a cohort study. J Clin Diagn Res. 14:ZC21–5. https://doi.org/10.7860/JCDR/2020/46175.14316. DOI: 10.7860/JCDR/2020/46175.14316. PMID: 3587560009bf4d5c939e35b025b5e926.
Article
18. Malmgren O, Goldson L, Hill C, Orwin A, Petrini L, Lundberg M. 1982; Root resorption after orthodontic treatment of traumatized teeth. Am J Orthod. 82:487–91. https://doi.org/10.1016/0002-9416(82)90317-7. DOI: 10.1016/0002-9416(82)90317-7. PMID: 6961819.
Article
19. Sharpe W, Reed B, Subtelny JD, Polson A. 1987; Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofacial Orthop. 91:252–8. https://doi.org/10.1016/0889-5406(87)90455-0. DOI: 10.1016/0889-5406(87)90455-0. PMID: 3469910.
Article
20. Evangelista K, Vasconcelos Kde F, Bumann A, Hirsch E, Nitka M, Silva MA. 2010; Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 138:133.e1–7. discussion 133–5. https://doi.org/10.1016/j.ajodo.2010.02.021. DOI: 10.1016/j.ajodo.2010.02.021. PMID: 20691344.
Article
21. Baratieri C, Alves M Jr, Mattos CT, Souza MM, Ruellas AC. 2013; Changes of pulp-chamber dimensions 1 year after rapid maxillary expansion. Am J Orthod Dentofacial Orthop. 143:471–8. https://doi.org/10.1016/j.ajodo.2012.10.022. DOI: 10.1016/j.ajodo.2012.10.022. PMID: 23561407.
Article
22. Ricketts RM, Bench RW, Hilgers JJ. 1972; Mandibular utility arch. The basic arch in the light progressive technique. Proc Found Orthod Res. 120–5. https://pubmed.ncbi.nlm.nih.gov/4519806/. PMID: 4519806.
23. Burstone CJ. 2001; Biomechanics of deep overbite correction. Semin Orthod. 7:26–33. https://doi.org/10.1053/sodo.2001.21059. DOI: 10.1053/sodo.2001.21059.
Article
24. Creekmore TD, Eklund MK. 1983; The possibility of skeletal anchorage. J Clin Orthod. 17:266–9. https://pubmed.ncbi.nlm.nih.gov/6574142/.
25. Deguchi T, Murakami T, Kuroda S, Yabuuchi T, Kamioka H, Takano-Yamamoto T. 2008; Comparison of the intrusion effects on the maxillary incisors between implant anchorage and J-hook headgear. Am J Orthod Dentofacial Orthop. 133:654–60. https://doi.org/10.1016/j.ajodo.2006.04.047. DOI: 10.1016/j.ajodo.2006.04.047. PMID: 18456138.
Article
26. Zachrisson BU. 1998; Esthetic factors involved in anterior tooth display and the smile: vertical dimension. J Clin Orthod. 32:432–45. https://www.jco-online.com/archive/1998/07/432-esthetic-factors-involved-in-anterior-tooth-display-and-the-smile-vertical-dimension/.
27. Ericsson I, Thilander B, Lindhe J, Okamoto H. 1977; The effect of orthodontic tilting movements on the periodontal tissues of infected and non-infected dentitions in dogs. J Clin Periodontol. 4:278–93. https://doi.org/10.1111/j.1600-051x.1977.tb01900.x. DOI: 10.1111/j.1600-051X.1977.tb01900.x. PMID: 271655.
Article
28. Ng J, Major PW, Heo G, Flores-Mir C. 2005; True incisor intrusion attained during orthodontic treatment: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop. 128:212–9. https://doi.org/10.1016/j.ajodo.2004.04.025. DOI: 10.1016/j.ajodo.2004.04.025. PMID: 16102407.
Article
29. Burstone CJ. Kraus BS, Riedel RA, editors. 1962. The biomechanics of tooth movement. Vistas in orthodontics. Lea & Febiger;Philadelphia: p. 197–213. https://search.worldcat.org/ko/title/4629377.
30. Melsen B, Agerbaek N, Markenstam G. 1989; Intrusion of incisors in adult patients with marginal bone loss. Am J Orthod Dentofacial Orthop. 96:232–41. https://doi.org/10.1016/0889-5406(89)90460-5. DOI: 10.1016/0889-5406(89)90460-5. PMID: 2773869.
Article
31. Sadek MM, Sabet NE, Hassan IT. 2019; Type of tooth movement during en masse retraction of the maxillary anterior teeth using labial versus lingual biocreative therapy in adults: a randomized clinical trial. Korean J Orthod. 49:381–92. https://doi.org/10.4041/kjod.2019.49.6.381. DOI: 10.4041/kjod.2019.49.6.381. PMID: 31815106. PMCID: PMC6883212.
Article
32. Zhang X, Zhou H, Liao X, Liu Y. 2022; The influence of bracket torque on external apical root resorption in bimaxillary protrusion patients: a retrospective study. BMC Oral Health. 22:7. https://doi.org/10.1186/s12903-022-02042-3. DOI: 10.1186/s12903-022-02042-3. PMID: 35012521. PMCID: PMC8750988. PMID: c68d66de749b44379432cdc286a10d48.
Article
33. Liaw J, Huang G, Tsai FF, Wang SH, Liao W. 2022; Torque control of maxillary anterior teeth with the double J retractor and palatal miniscrews during en masse retraction. Angle Orthod. 92:562–72. https://doi.org/10.2319/092621-725.1. DOI: 10.2319/092621-725.1. PMID: 35157034. PMCID: PMC9235380.
Article
34. Parker RJ, Harris EF. 1998; Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor. Am J Orthod Dentofacial Orthop. 114:677–83. https://doi.org/10.1016/s0889-5406(98)70200-8. DOI: 10.1016/S0889-5406(98)70200-8. PMID: 9844208.
Article
35. Albelasy NF, Montasser MA, Hafez AM, Abdelnaby YL. 2022; Effects on root axes and resorption of simultaneous intrusion and retraction of maxillary central and lateral incisors using mini-implant supported three-piece burstone base arch: a prospective observational study. Int Orthod. 20:100595. https://doi.org/10.1016/j.ortho.2021.10.003. DOI: 10.1016/j.ortho.2021.10.003. PMID: 34802960.
Article
36. de Freitas MR, Beltrão RT, Janson G, Henriques JF, Chiqueto K. 2007; Evaluation of root resorption after open bite treatment with and without extractions. Am J Orthod Dentofacial Orthop. 132:143.e15–22. https://doi.org/10.1016/j.ajodo.2006.10.018. DOI: 10.1016/j.ajodo.2006.10.018. PMID: 17693358.
Article
37. Sadek MM. 2023; Root resorption of maxillary incisors after en masse intrusion and retraction with controlled tipping versus bodily movement in adults. J Orthod Sci. 12:67. https://doi.org/10.4103/jos.jos_27_23. DOI: 10.4103/jos.jos_27_23. PMID: 38234648. PMCID: PMC10793851. PMID: 6e53a6e0fbc94b2f94d1713e6011dd76.
Article
38. Martins DR, Tibola D, Janson G, Maria FR. 2012; Effects of intrusion combined with anterior retraction on apical root resorption. Eur J Orthod. 34:170–5. https://doi.org/10.1093/ejo/cjq178. DOI: 10.1093/ejo/cjq178. PMID: 21389075.
Article
39. Imamura T, Uesugi S, Ono T. 2020; Unilateral maxillary central incisor root resorption after orthodontic treatment for Angle Class II, division 1 malocclusion with significant maxillary midline deviation: a possible correlation with root proximity to the incisive canal. Korean J Orthod. 50:216–26. https://doi.org/10.4041/kjod.2020.50.3.216. DOI: 10.4041/kjod.2020.50.3.216. PMID: 32475849. PMCID: PMC7270934.
Article
40. Malek S, Darendeliler MA, Swain MV. 2001; Physical properties of root cementum: part I. a new method for 3-dimensional evaluation. Am J Orthod Dentofacial Orthop. 120:198–208. https://doi.org/10.1067/mod.2001.114535. DOI: 10.1067/mod.2001.114535. PMID: 11500663.
Article
41. de Almeida MR, Marçal ASB, Fernandes TMF, Vasconcelos JB, de Almeida RR, Nanda R. 2018; A comparative study of the effect of the intrusion arch and straight wire mechanics on incisor root resorption: a randomized, controlled trial. Angle Orthod. 88:20–6. https://doi.org/10.2319/06417-424r. DOI: 10.2319/06417-424R. PMID: 28985106. PMCID: PMC8315715.
Article
42. Huokuna J, Loimaranta V, Laine MA, Svedström-Oristo AL. 2023; Adverse effects of orthodontic forces on dental pulp. Appearance and character. A systematic review. Acta Odontol Scand. 81:267–77. https://doi.org/10.1080/00016357.2022.2137232. DOI: 10.1080/00016357.2022.2137232. PMID: 36436210.
Article
43. Sabuncuoglu FA, Ersahan S. 2014; Changes in maxillary incisor dental pulp blood flow during intrusion by mini-implants. Acta Odontol Scand. 72:489–96. https://doi.org/10.3109/00016357.2013.867362. DOI: 10.3109/00016357.2013.867362. PMID: 24438561.
Article
44. Kasahara E, Yasuda E, Yamamoto A, Anzai M. 1990; Root canal system of the maxillary central incisor. J Endod. 16:158–61. https://doi.org/10.1016/s0099-2399(06)81962-x. DOI: 10.1016/S0099-2399(06)81962-X. PMID: 2074404.
Article
45. Guo Z, Zhang R, Guo C, Li X, Jin Z, Liu Q. 2024; A retrospective study of alveolar bone remodelling after anterior retraction in orthodontic tooth extraction cases with clear aligners and fixed appliances. Orthod Craniofac Res. 27:220–7. https://doi.org/10.1111/ocr.12705. DOI: 10.1111/ocr.12705. PMID: 37578004.
Article
46. Bae SM, Kim HJ, Kyung HM. 2018; Long-term changes of the anterior palatal alveolar bone after treatment with bialveolar protrusion, evaluated with computed tomography. Am J Orthod Dentofacial Orthop. 153:108–17. https://doi.org/10.1016/j.ajodo.2016.09.034. DOI: 10.1016/j.ajodo.2016.09.034. PMID: 29287637.
Article
47. Guo R, Li L, Lin Y, Huang Y, Liu J, Pan M, et al. 2023; Long-term bone remodeling of maxillary anterior teeth with post-treatment alveolar bone defect in adult patients with maxillary protrusion: a prospective follow-up study. Prog Orthod. 24:36. https://doi.org/10.1186/s40510-023-00489-w. DOI: 10.1186/s40510-023-00489-w. PMID: 37926789. PMCID: PMC10625924. PMID: b7017740022447aea5c0dbf23057e468.
Article
48. Wang J, Zhou W, Wu Y, Dai H, Zhou J. 2022; Long-term changes in the anterior alveolar bone after orthodontic treatment with premolar extraction: a retrospective study. Orthod Craniofac Res. 25:174–82. https://doi.org/10.1111/ocr.12523. DOI: 10.1111/ocr.12523. PMID: 34320269.
Article
49. Li Y, Zhan Q, Bao M, Yi J, Li Y. 2021; Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 13:20. https://doi.org/10.1038/s41368-021-00125-5. DOI: 10.1038/s41368-021-00125-5. PMID: 34183652. PMCID: PMC8239047. PMID: 9fab63387c3f4c33932a347fd00392c6.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr