2. Chen CH, Huang MH, Yang JC, et al. 2006; Prevalence and risk factors of gallstone disease in an adult population of Taiwan: an epidemiological survey. J Gastroenterol Hepatol. 21:1737–1743. DOI:
10.1111/j.1440-1746.2006.04381.x. PMID:
16984599.
Article
4. Tazuma S. 2006; Gallstone disease: Epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intra-hepatic). Best Pract Res Clin Gastroenterol. 20:1075–1083. DOI:
10.1016/j.bpg.2006.05.009. PMID:
17127189.
Article
5. Schafmayer C, Hartleb J, Tepel J, et al. 2006; Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 6:36. DOI:
10.1186/1471-230X-6-36. PMID:
17121681. PMCID:
PMC1664574.
Article
7. Chen L, Yang H, Li H, He C, Yang L, Lv G. 2022; Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study. Hepatology. 75:785–796. DOI:
10.1002/hep.32183. PMCID:
PMC9300195.
Article
8. Klass DM, Lauer N, Hay B, Kratzer W, Fuchs M. EMIL Study Group. 2007; Arg64 variant of the beta3-adrenergic receptor is associated with gallstone formation. Am J Gastroenterol. 102:2482–2487. DOI:
10.1111/j.1572-0241.2007.01430.x. PMID:
17640319.
Article
11. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. 2017; Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 22:358. DOI:
10.3390/molecules22030358. PMID:
28245635. PMCID:
PMC6155416.
Article
12. Worthington HV, Hunt LP, McCloy RF, Ubbink JB, Braganza JM. 2004; Dietary antioxidant lack, impaired hepatic glutathione reserve, and cholesterol gallstones. Clin Chim Acta. 349:157–165. DOI:
10.1016/j.cccn.2004.06.022. PMID:
15469869.
Article
18. Cortes VA, Busso D, Maiz A, Arteaga A, Nervi F, Rigotti A. 2014; Physiological and pathological implications of cholesterol. Front Biosci (Landmark Ed). 19:416–428. DOI:
10.2741/4216. PMID:
24389193.
Article
21. Márk L, Paragh G. 2007; Change in the cholesterol metabolism associated with the combined inhibition of synthesis and absorption. Orv Hetil. 148:627–632. DOI:
10.1556/oh.2007.28065. PMID:
17403635.
Article
25. Bilotta MT, Petillo S, Santoni A, Cippitelli M. 2020; Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol. 11:584303. DOI:
10.3389/fimmu.2020.584303. PMID:
33224146. PMCID:
PMC7670053.
Article
27. Uppal H, Zhai Y, Gangopadhyay A, et al. 2008; Activation of liver X receptor sensitizes mice to gallbladder cholesterol crystallization. Hepatology. 47:1331–1342. DOI:
10.1002/hep.22175. PMID:
18318438.
Article
30. Xu H, Zhou S, Tang Q, Xia H, Bi F. 2020; Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 1874:188394. DOI:
10.1016/j.bbcan.2020.188394. PMID:
32698040.
Article
33. O'Neill KI, Kuo LW, Williams MM, et al. 2022; NPC1 confers metabolic flexibility in triple negative breast cancer. Cancers (Basel). 14:3543. DOI:
10.3390/cancers14143543. PMID:
35884604. PMCID:
PMC9319388.
35. Sanders FW, Griffin JL. 2016; De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 91:452–468. DOI:
10.1111/brv.12178. PMID:
25740151. PMCID:
PMC4832395.
Article
37. Geidl-Flueck B, Hochuli M, Németh Á, et al. 2021; Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol. 75:46–54. DOI:
10.1016/j.jhep.2021.02.027. PMID:
33684506.
Article
42. Smith U, Kahn BB. 2016; Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 280:465–475. DOI:
10.1111/joim.12540. PMID:
27699898. PMCID:
PMC5218584.
Article
43. Zhou B, Luo Y, Ji N, Hu C, Lu Y. 2022; Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis. Nat Metab. 4:1185–1201. DOI:
10.1038/s42255-022-00627-4. PMID:
36050503.
Article
44. Ibarretxe D, Masana L. 2021; Triglyceride metabolism and classification of hypertriglyceridemias. Clin Investig Arterioscler. 33 Suppl 2:1–6. DOI:
10.1016/j.arteri.2021.02.004. PMID:
34006348.
46. Barrows BR, Parks EJ. 2006; Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 91:1446–1452. DOI:
10.1210/jc.2005-1709. PMID:
16449340.
Article
57. Verstockt B, Vetrano S, Salas A, Nayeri S, Duijvestein M, Vande Casteele N. Alimentiv Translational Research Consortium (ATRC). 2022; Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 19:351–366. DOI:
10.1038/s41575-021-00574-7. PMID:
35165437.
Article
58. Jozefczuk E, Guzik TJ, Siedlinski M. 2020; Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res. 156:104793. DOI:
10.1016/j.phrs.2020.104793. PMID:
32278039.
Article
61. Wang HH, Portincasa P, Liu M, Wang DQ. 2022; Genetic analysis of ABCB4 mutations and variants related to the pathogenesis and pathophysiology of low phospholipid-associated cholelithiasis. Genes (Basel). 13:1047. DOI:
10.3390/genes13061047. PMID:
35741809. PMCID:
PMC9222727.
Article
63. Nishimura T, Stefan CJ. 2020; Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:158492. DOI:
10.1016/j.bbalip.2019.07.001. PMID:
31349025.
Article
64. Coleman R. Bile salts and biliary lipids. Biochem Soc Trans. 1987; 15 Suppl:68S–80S.
65. Portincasa P, Ciaula AD, Bonfrate L, Wang DQ. 2012; Therapy of gallstone disease: What it was, what it is, what it will be. World J Gastrointest Pharmacol Ther. 3:7–20. DOI:
10.4292/wjgpt.v3.i2.7. PMID:
22577615. PMCID:
PMC3348960.
Article
66. Claudel T, Zollner G, Wagner M, Trauner M. 2011; Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta. 1812:867–878. DOI:
10.1016/j.bbadis.2010.12.021. PMID:
21194565.
Article
67. Caroli-Bosc FX, Le Gall P, Pugliese P, et al. 2001; Role of fibrates and HMG-CoA reductase inhibitors in gallstone formation: epidemiological study in an unselected population. Dig Dis Sci. 46:540–544. DOI:
10.1023/A:1005643014395. PMID:
11318529.
68. Hu H, Shao W, Liu Q, et al. 2022; Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nat Commun. 13:252. DOI:
10.1038/s41467-021-27758-8. PMID:
35017486. PMCID:
PMC8752841.
70. Hermann S, Kuhlmann MT, Starsichova A, et al. 2016; Imaging reveals the connection between spontaneous coronary plaque ruptures, atherothrombosis, and myocardial infarctions in HypoE/SRBI-/- Mice. J Nucl Med. 57:1420–1427. DOI:
10.2967/jnumed.115.171132. PMID:
27127225.
71. Miquel JF, Moreno M, Amigo L, et al. 2003; Expression and regulation of scavenger receptor class B type I (SR-BI) in gall bladder epithelium. Gut. 52:1017–1024. DOI:
10.1136/gut.52.7.1017. PMID:
12801960. PMCID:
PMC1773711.
Article
73. Chen L, Qiu W, Sun X, et al. 2024; Novel insights into causal effects of serum lipids and lipid-modifying targets on cholelithiasis. Gut. 73:521–532.
Article
75. Castro J, Amigo L, Miquel JF, et al. 2007; Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology. 45:1261–1266. DOI:
10.1002/hep.21616. PMID:
17464999.
Article
77. Hofmann AF, Schteingart CD, vanSonnenberg E, Esch O, Zakko SF. 1991; Contact dissolution of cholesterol gallstones with organic solvents. Gastroenterol Clin North Am. 20:183–199. DOI:
10.1016/S0889-8553(21)00540-9. PMID:
2022421.
Article
82. Goubault P, Brunel T, Rode A, Bancel B, Mohkam K, Mabrut JY. 2019; Low-Phospholipid Associated Cholelithiasis (LPAC) syndrome: A synthetic review. J Visc Surg. 156:319–328. DOI:
10.1016/j.jviscsurg.2019.02.006. PMID:
30922600.
Article
83. Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E. 2009; Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci (Landmark Ed). 14:4242–4256. DOI:
10.2741/3526. PMID:
19273348.
Article
84. Atamanalp SS, Keles MS, Atamanalp RS, Acemoglu H, Laloglu E. 2013; The effects of serum cholesterol, LDL, and HDL levels on gallstone cholesterol concentration. Pak J Med Sci. 29:187–190. DOI:
10.12669/pjms.291.2798. PMID:
24353537. PMCID:
PMC3809189.
Article
85. Fu X, Gong K, Shao X. 1995; The relationship between serum lipids, apolipoproteins level and bile lipids level, chemical type of stone. Zhonghua Yi Xue Za Zhi. 75:656–659. 708
86. Lavoie B, Nausch B, Zane EA, et al. 2012; Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 24:e313–e324. DOI:
10.1111/j.1365-2982.2012.01935.x. PMID:
22621672. PMCID:
PMC3378777.
Article
87. Wang HH, Portincasa P, Wang DQ. 2019; Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 26:3407–3423. DOI:
10.2174/0929867324666170619104801. PMID:
28625150. PMCID:
PMC8118134.
Article
88. Kanto J, Katevuo K. 1981; The effect of drugs with different mechanisms of action on the contraction of the human gallbladder. Int J Clin Pharmacol Ther Toxicol. 19:303–309.
91. Buch S, Schafmayer C, Völzke H, et al. 2007; A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet. 39:995–999. DOI:
10.1038/ng2101. PMID:
17632509.
Article
92. Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. 2014; ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta. 428:82–88. DOI:
10.1016/j.cca.2013.11.010. PMID:
24252657.
Article
93. Lauridsen BK, Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. 2015; Genetic variation in the cholesterol transporter NPC1L1, ischaemic vascular disease, and gallstone disease. Eur Heart J. 36:1601–1608. DOI:
10.1093/eurheartj/ehv108. PMID:
25841872.
Article
95. Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. 2021; Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr. 9:6882–6891. DOI:
10.1002/fsn3.2600. PMID:
34925816. PMCID:
PMC8645708.
Article
96. Li R, Liu Y, Shi J, et al. 2019; Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1124–1133. DOI:
10.1016/j.bbalip.2019.04.010. PMID:
31054325.
Article
97. Mohammadi A, Bazrafshani MR, Oshaghi EA. 2013; Effect of garlic extract on some serum biochemical parameters and expression of npc1l1, abca1, abcg5 and abcg8 genes in the intestine of hypercholesterolemic mice. Indian J Biochem Biophys. 50:500–504.
99. Yang B, Liu B, Bi P, Wu T, Wang Q, Zhang J. 2015; An integrated analysis of differential miRNA and mRNA expressions in human gallstones. Mol Biosyst. 11:1004–1011. DOI:
10.1039/C4MB00741G. PMID:
25639987.
Article
100. Wang G, Zhang H, Zhou Z, et al. 2023; AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med. 29:116. DOI:
10.1186/s10020-023-00712-8. PMID:
37641009. PMCID:
PMC10463418.
Article
101. Guman MSS, Hoozemans JB, Haal S, et al. 2022; Adipose tissue, bile acids, and gut microbiome species associated with gallstones after bariatric surgery. J Lipid Res. 63:100280. DOI:
10.1016/j.jlr.2022.100280. PMID:
36115596. PMCID:
PMC9672443.
Article
102. Casertano M, Trotta MC, Cenni S, et al. 2024; Infliximab therapy decreases the expression of serum and faecal miR-126 and miR-20a in paediatric Crohn's disease: A pilot study. Acta Paediatr. 113:590–597. DOI:
10.1111/apa.17072. PMID:
38140840.
Article
103. Wei J, Chen T, Liu Y, et al. 2023; Targeted bile acids metabolomics in cholesterol gallbladder polyps and gallstones: From analytical method development towards application to clinical samples. J Pharm Anal. 13:1080–1087. DOI:
10.1016/j.jpha.2023.06.003. PMID:
37842658. PMCID:
PMC10568091.
Article
104. Slyshenkov VS, Rakowska M, Wojtczak L. 1996; Protective effect of pantothenic acid and related compounds against permeabilization of Ehrlich ascites tumour cells by digitonin. Acta Biochim Pol. 43:407–410. DOI:
10.18388/abp.1996_4512. PMID:
8862188.
Article