Korean J Gastroenterol.  2025 Jan;85(1):11-21. 10.4166/kjg.2024.135.

Relationship between Abnormal Lipid Metabolism and Gallstone Formation

Affiliations
  • 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
  • 2NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
  • 3Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
  • 4Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China

Abstract

Cholelithiasis is a common biliary system disease with a high incidence worldwide. Abnormal lipid metabolism has been shown to play a key role in the mechanism of gallstones. Therefore, recent research literature on the genes, proteins, and molecular substances involved in lipid metabolism during the pathogenesis of gallstones has been conducted. This study aimed to determine the role of lipid metabolism in the pathogenesis of gallstones and provide insights for future studies using previous research in genomics, metabolomics, transcriptomics, and other fields.

Keyword

Gallstones; Lipid metabolism; Triglycerides; Phospholipids; Metabolomics

Figure

  • Fig. 1 In vivo synthesis and metabolic pathways of cholesterol.

  • Fig. 2 Key enzymes for phospholipid synthesis and metabolism in vivo.

  • Fig. 3 Effects of MDR3 mutations on phospholipid transport on the membrane of hepatic tubular cells.

  • Fig. 4 Pathway of TCA cycle in the formation of gallstones.

  • Fig. 5 Positions and roles of CD36, APOA-1, SR-BI, and CYP7A1 in the KEGG pathway of cholesterol synthesis.


Reference

1. Lammert F, Gurusamy K, Ko CW, et al. 2016; Gallstones. Nat Rev Dis Primers. 2:16024. DOI: 10.1038/nrdp.2016.24.
Article
2. Chen CH, Huang MH, Yang JC, et al. 2006; Prevalence and risk factors of gallstone disease in an adult population of Taiwan: an epidemiological survey. J Gastroenterol Hepatol. 21:1737–1743. DOI: 10.1111/j.1440-1746.2006.04381.x. PMID: 16984599.
Article
3. Qiao T, Ma RH, Luo XB, Yang LQ, Luo ZL, Zheng PM. 2013; The systematic classification of gallbladder stones. PLoS One. 8:e74887. DOI: 10.1371/journal.pone.0074887. PMID: 24124459. PMCID: PMC3790764.
Article
4. Tazuma S. 2006; Gallstone disease: Epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intra-hepatic). Best Pract Res Clin Gastroenterol. 20:1075–1083. DOI: 10.1016/j.bpg.2006.05.009. PMID: 17127189.
Article
5. Schafmayer C, Hartleb J, Tepel J, et al. 2006; Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 6:36. DOI: 10.1186/1471-230X-6-36. PMID: 17121681. PMCID: PMC1664574.
Article
6. Portincasa P, Moschetta A, Palasciano G. 2006; Cholesterol gallstone disease. Lancet. 368:230–239. DOI: 10.1016/S0140-6736(06)69044-2. PMID: 16844493.
Article
7. Chen L, Yang H, Li H, He C, Yang L, Lv G. 2022; Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study. Hepatology. 75:785–796. DOI: 10.1002/hep.32183. PMCID: PMC9300195.
Article
8. Klass DM, Lauer N, Hay B, Kratzer W, Fuchs M. EMIL Study Group. 2007; Arg64 variant of the beta3-adrenergic receptor is associated with gallstone formation. Am J Gastroenterol. 102:2482–2487. DOI: 10.1111/j.1572-0241.2007.01430.x. PMID: 17640319.
Article
9. Reshetnyak VI. 2012; Concept of the pathogenesis and treatment of cholelithiasis. World J Hepatol. 4:18–34. DOI: 10.4254/wjh.v4.i2.18. PMID: 22400083. PMCID: PMC3295849.
Article
10. Itani M, Dubinsky TJ. 2017; Physical chemistry of bile: Detailed pathogenesis of cholelithiasis. Ultrasound Q. 33:229–236. DOI: 10.1097/RUQ.0000000000000287. PMID: 28350710.
11. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. 2017; Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 22:358. DOI: 10.3390/molecules22030358. PMID: 28245635. PMCID: PMC6155416.
Article
12. Worthington HV, Hunt LP, McCloy RF, Ubbink JB, Braganza JM. 2004; Dietary antioxidant lack, impaired hepatic glutathione reserve, and cholesterol gallstones. Clin Chim Acta. 349:157–165. DOI: 10.1016/j.cccn.2004.06.022. PMID: 15469869.
Article
13. Fremont-Rahl JJ, Ge Z, Umana C, et al. 2013; An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis. PLoS One. 8:e70657. DOI: 10.1371/journal.pone.0070657. PMID: 23923015. PMCID: PMC3726617.
Article
14. Alves-Bezerra M, Cohen DE. 2017; Triglyceride metabolism in the liver. Compr Physiol. 8:1–8. DOI: 10.1002/cphy.c170012. PMCID: PMC6376873.
15. Tamura Y, Sesaki H, Endo T. 2014; Phospholipid transport via mitochondria. Traffic. 15:933–945. DOI: 10.1111/tra.12188. PMID: 24954234. PMCID: PMC4140972.
Article
16. DeBose-Boyd RA. 2018; Significance and regulation of lipid metabolism. Semin Cell Dev Biol. 81:97. DOI: 10.1016/j.semcdb.2017.12.003. PMID: 29246858.
Article
17. Jones JG. 2016; Hepatic glucose and lipid metabolism. Diabetologia. 59:1098–1103. DOI: 10.1007/s00125-016-3940-5. PMID: 27048250.
Article
18. Cortes VA, Busso D, Maiz A, Arteaga A, Nervi F, Rigotti A. 2014; Physiological and pathological implications of cholesterol. Front Biosci (Landmark Ed). 19:416–428. DOI: 10.2741/4216. PMID: 24389193.
Article
19. Luo J, Yang H, Song BL. 2020; Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 21:225–245. DOI: 10.1038/s41580-019-0190-7. PMID: 31848472.
Article
20. Cholesterol absorption versus cholesterol synthesis in man. Nutr Rev. 1970; 28:11–15. DOI: 10.1111/j.1753-4887.1970.tb06143.x. PMID: 4906653.
21. Márk L, Paragh G. 2007; Change in the cholesterol metabolism associated with the combined inhibition of synthesis and absorption. Orv Hetil. 148:627–632. DOI: 10.1556/oh.2007.28065. PMID: 17403635.
Article
22. Schroepfer GJ Jr. 2000; Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 80:361–554. DOI: 10.1152/physrev.2000.80.1.361. PMID: 10617772.
Article
23. Phillips MC. 2014; Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 289:24020–24029. DOI: 10.1074/jbc.R114.583658. PMID: 25074931. PMCID: PMC4148835.
Article
24. Zhang Q, Ke Y, Hong H. 2022; HDL and Lipid Metabolism. Adv Exp Med Biol. 1377:49–61. DOI: 10.1007/978-981-19-1592-5_4. PMID: 35575920.
Article
25. Bilotta MT, Petillo S, Santoni A, Cippitelli M. 2020; Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol. 11:584303. DOI: 10.3389/fimmu.2020.584303. PMID: 33224146. PMCID: PMC7670053.
Article
26. Nazih H, Bard JM. 2020; Cholesterol, oxysterols and LXRs in breast cancer pathophysiology. Int J Mol Sci. 21:1356. DOI: 10.3390/ijms21041356. PMID: 32079340. PMCID: PMC7072989.
Article
27. Uppal H, Zhai Y, Gangopadhyay A, et al. 2008; Activation of liver X receptor sensitizes mice to gallbladder cholesterol crystallization. Hepatology. 47:1331–1342. DOI: 10.1002/hep.22175. PMID: 18318438.
Article
28. Luu W, Sharpe LJ, Capell-Hattam I, Gelissen IC, Brown AJ. 2016; Oxysterols: Old tale, new twists. Annu Rev Pharmacol Toxicol. 56:447–467. DOI: 10.1146/annurev-pharmtox-010715-103233. PMID: 26738477.
Article
29. Cardoso D, Perucha E. 2021; Cholesterol metabolism: a new molecular switch to control inflammation. Clin Sci (Lond). 135:1389–1408. DOI: 10.1042/CS20201394. PMID: 34086048. PMCID: PMC8187928.
Article
30. Xu H, Zhou S, Tang Q, Xia H, Bi F. 2020; Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 1874:188394. DOI: 10.1016/j.bbcan.2020.188394. PMID: 32698040.
Article
31. Oni TE, Biffi G, Baker LA, et al. 2020; SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med. 217:e20192389. DOI: 10.1084/jem.20192389. PMID: 32633781. PMCID: PMC7478739.
Article
32. Sun H, Li L, Li W, et al. 2021; p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep. 22:e52537. DOI: 10.15252/embr.202152537. PMID: 34459531. PMCID: PMC8490977.
Article
33. O'Neill KI, Kuo LW, Williams MM, et al. 2022; NPC1 confers metabolic flexibility in triple negative breast cancer. Cancers (Basel). 14:3543. DOI: 10.3390/cancers14143543. PMID: 35884604. PMCID: PMC9319388.
34. Weiss SB, Kennedy EP, Kiyasu JY. 1960; The enzymatic synthesis of triglycerides. J Biol Chem. 235:40–44. DOI: 10.1016/S0021-9258(18)69581-X. PMID: 13843753.
Article
35. Sanders FW, Griffin JL. 2016; De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 91:452–468. DOI: 10.1111/brv.12178. PMID: 25740151. PMCID: PMC4832395.
Article
36. Softic S, Cohen DE, Kahn CR. 2016; Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 61:1282–1293. DOI: 10.1007/s10620-016-4054-0. PMID: 26856717. PMCID: PMC4838515.
Article
37. Geidl-Flueck B, Hochuli M, Németh Á, et al. 2021; Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol. 75:46–54. DOI: 10.1016/j.jhep.2021.02.027. PMID: 33684506.
Article
38. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. 2014; De novo lipogenesis in health and disease. Metabolism. 63:895–902. DOI: 10.1016/j.metabol.2014.04.003. PMID: 24814684.
Article
39. Lee DS, An TH, Kim H, et al. 2023; Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice. Diabetologia. 66:931–954. DOI: 10.1007/s00125-023-05878-8. PMID: 36759348. PMCID: PMC10036287.
Article
40. Zeng H, Qin H, Liao M, et al. 2022; CD36 promotes de novo lipogenesis in hepatocytes through INSIG2-dependent SREBP1 processing. Mol Metab. 57:101428. DOI: 10.1016/j.molmet.2021.101428. PMID: 34974159. PMCID: PMC8810570.
Article
41. Kawano Y, Cohen DE. 2013; Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 48:434–441. DOI: 10.1007/s00535-013-0758-5. PMID: 23397118. PMCID: PMC3633701.
Article
42. Smith U, Kahn BB. 2016; Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 280:465–475. DOI: 10.1111/joim.12540. PMID: 27699898. PMCID: PMC5218584.
Article
43. Zhou B, Luo Y, Ji N, Hu C, Lu Y. 2022; Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis. Nat Metab. 4:1185–1201. DOI: 10.1038/s42255-022-00627-4. PMID: 36050503.
Article
44. Ibarretxe D, Masana L. 2021; Triglyceride metabolism and classification of hypertriglyceridemias. Clin Investig Arterioscler. 33 Suppl 2:1–6. DOI: 10.1016/j.arteri.2021.02.004. PMID: 34006348.
45. Kersten S. 2023; The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 1868:159262. DOI: 10.1016/j.bbalip.2022.159262. PMID: 36521736.
Article
46. Barrows BR, Parks EJ. 2006; Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 91:1446–1452. DOI: 10.1210/jc.2005-1709. PMID: 16449340.
Article
47. Cerk IK, Wechselberger L, Oberer M. 2018; Adipose triglyceride lipase regulation: An overview. Curr Protein Pept Sci. 19:221–233. DOI: 10.2174/1389203718666170918160110. PMID: 28925902. PMCID: PMC7613786.
Article
48. Schott MB, Weller SG, Schulze RJ, et al. 2019; Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol. 218:3320–3335. DOI: 10.1083/jcb.201803153. PMID: 31391210. PMCID: PMC6781454.
Article
49. Fyrst H, Saba JD. 2010; An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol. 6:489–497. DOI: 10.1038/nchembio.392. PMID: 20559316. PMCID: PMC3001344.
Article
50. Alb JG Jr, Kearns MA, Bankaitis VA. 1996; Phospholipid metabolism and membrane dynamics. Curr Opin Cell Biol. 8:534–541. DOI: 10.1016/S0955-0674(96)80032-9. PMID: 8791444.
Article
51. Moreau P, Cassagne C. 1994; Phospholipid trafficking and membrane biogenesis. Biochim Biophys Acta. 1197:257–290. DOI: 10.1016/0304-4157(94)90010-8. PMID: 7819268.
Article
52. Dickson EJ. 2022; Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 1867:159107. DOI: 10.1016/j.bbalip.2021.159107. PMID: 34995791. PMCID: PMC9662651.
Article
53. Fruman DA, Meyers RE, Cantley LC. 1998; Phosphoinositide kinases. Annu Rev Biochem. 67:481–507. DOI: 10.1146/annurev.biochem.67.1.481. PMID: 9759495.
Article
54. McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. 2020; Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res. 78:101018. DOI: 10.1016/j.plipres.2019.101018. PMID: 31830503. PMCID: PMC7233427.
Article
55. Dekker N. 2000; Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol. 35:711–717. DOI: 10.1046/j.1365-2958.2000.01775.x. PMID: 10692149.
Article
56. Cartier A, Hla T. 2019; Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science. 366:eaar5551. DOI: 10.1126/science.aar5551. PMID: 31624181. PMCID: PMC7661103.
Article
57. Verstockt B, Vetrano S, Salas A, Nayeri S, Duijvestein M, Vande Casteele N. Alimentiv Translational Research Consortium (ATRC). 2022; Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 19:351–366. DOI: 10.1038/s41575-021-00574-7. PMID: 35165437.
Article
58. Jozefczuk E, Guzik TJ, Siedlinski M. 2020; Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res. 156:104793. DOI: 10.1016/j.phrs.2020.104793. PMID: 32278039.
Article
59. Obinata H, Hla T. 2019; Sphingosine 1-phosphate and inflammation. Int Immunol. 31:617–625. DOI: 10.1093/intimm/dxz037. PMID: 31049553. PMCID: PMC6939830.
60. Erlinger S. 2012; Low phospholipid-associated cholestasis and cholelithiasis. Clin Res Hepatol Gastroenterol. 36 Suppl 1:S36–40. DOI: 10.1016/S2210-7401(12)70019-0. PMID: 23141892.
Article
61. Wang HH, Portincasa P, Liu M, Wang DQ. 2022; Genetic analysis of ABCB4 mutations and variants related to the pathogenesis and pathophysiology of low phospholipid-associated cholelithiasis. Genes (Basel). 13:1047. DOI: 10.3390/genes13061047. PMID: 35741809. PMCID: PMC9222727.
Article
62. Sam PN, Avery E, Claypool SM. 2019; Proteolytic control of lipid metabolism. ACS Chem Biol. 14:2406–2423. DOI: 10.1021/acschembio.9b00695. PMID: 31503446. PMCID: PMC6989095.
Article
63. Nishimura T, Stefan CJ. 2020; Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:158492. DOI: 10.1016/j.bbalip.2019.07.001. PMID: 31349025.
Article
64. Coleman R. Bile salts and biliary lipids. Biochem Soc Trans. 1987; 15 Suppl:68S–80S.
65. Portincasa P, Ciaula AD, Bonfrate L, Wang DQ. 2012; Therapy of gallstone disease: What it was, what it is, what it will be. World J Gastrointest Pharmacol Ther. 3:7–20. DOI: 10.4292/wjgpt.v3.i2.7. PMID: 22577615. PMCID: PMC3348960.
Article
66. Claudel T, Zollner G, Wagner M, Trauner M. 2011; Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta. 1812:867–878. DOI: 10.1016/j.bbadis.2010.12.021. PMID: 21194565.
Article
67. Caroli-Bosc FX, Le Gall P, Pugliese P, et al. 2001; Role of fibrates and HMG-CoA reductase inhibitors in gallstone formation: epidemiological study in an unselected population. Dig Dis Sci. 46:540–544. DOI: 10.1023/A:1005643014395. PMID: 11318529.
68. Hu H, Shao W, Liu Q, et al. 2022; Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nat Commun. 13:252. DOI: 10.1038/s41467-021-27758-8. PMID: 35017486. PMCID: PMC8752841.
69. Yu H. 2022; HDL and scavenger receptor class B type I (SRBI). Adv Exp Med Biol. 1377:79–93. DOI: 10.1007/978-981-19-1592-5_6. PMID: 35575922.
70. Hermann S, Kuhlmann MT, Starsichova A, et al. 2016; Imaging reveals the connection between spontaneous coronary plaque ruptures, atherothrombosis, and myocardial infarctions in HypoE/SRBI-/- Mice. J Nucl Med. 57:1420–1427. DOI: 10.2967/jnumed.115.171132. PMID: 27127225.
71. Miquel JF, Moreno M, Amigo L, et al. 2003; Expression and regulation of scavenger receptor class B type I (SR-BI) in gall bladder epithelium. Gut. 52:1017–1024. DOI: 10.1136/gut.52.7.1017. PMID: 12801960. PMCID: PMC1773711.
Article
72. Rigotti A, Zanlungo S, Miquel JF, Wang DQ. 2002; HDL receptor SR-BI and cholesterol gallstones. Hepatology. 35:240–242. DOI: 10.1053/jhep.2002.30273. PMID: 11786985.
Article
73. Chen L, Qiu W, Sun X, et al. 2024; Novel insights into causal effects of serum lipids and lipid-modifying targets on cholelithiasis. Gut. 73:521–532.
Article
74. Xie Y, Cifarelli V, Pietka T, et al. 2017; Cd36 knockout mice are protected against lithogenic diet-induced gallstones. J Lipid Res. 58:1692–1701. DOI: 10.1194/jlr.M077479. PMID: 28634191. PMCID: PMC5538290.
Article
75. Castro J, Amigo L, Miquel JF, et al. 2007; Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology. 45:1261–1266. DOI: 10.1002/hep.21616. PMID: 17464999.
Article
76. Smelt AH. 2010; Triglycerides and gallstone formation. Clin Chim Acta. 411:1625–1631. DOI: 10.1016/j.cca.2010.08.003. PMID: 20699090.
Article
77. Hofmann AF, Schteingart CD, vanSonnenberg E, Esch O, Zakko SF. 1991; Contact dissolution of cholesterol gallstones with organic solvents. Gastroenterol Clin North Am. 20:183–199. DOI: 10.1016/S0889-8553(21)00540-9. PMID: 2022421.
Article
78. Koh EH, Yoon JE, Ko MS, et al. 2021; Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut. 70:1954–1964. DOI: 10.1136/gutjnl-2020-322509. PMID: 33208407. PMCID: PMC8458090.
Article
79. Chen Y, Cao Y. 2017; The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol Chem. 398:1319–1325. DOI: 10.1515/hsz-2017-0148. PMID: 28742512.
Article
80. Endo T, Tamura Y, Kawano S. 2018; Phospholipid transfer by ERMES components. Aging (Albany NY). 10:528–529. DOI: 10.18632/aging.101434. PMID: 29706612. PMCID: PMC5940124.
Article
81. Dong C, Condat B, Picon-Coste M, et al. 2020; Low-phospholipid-associated cholelithiasis syndrome: Prevalence, clinical features, and comorbidities. JHEP Rep. 3:100201. DOI: 10.1016/j.jhepr.2020.100201. PMID: 33554096. PMCID: PMC7848766.
Article
82. Goubault P, Brunel T, Rode A, Bancel B, Mohkam K, Mabrut JY. 2019; Low-Phospholipid Associated Cholelithiasis (LPAC) syndrome: A synthetic review. J Visc Surg. 156:319–328. DOI: 10.1016/j.jviscsurg.2019.02.006. PMID: 30922600.
Article
83. Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E. 2009; Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci (Landmark Ed). 14:4242–4256. DOI: 10.2741/3526. PMID: 19273348.
Article
84. Atamanalp SS, Keles MS, Atamanalp RS, Acemoglu H, Laloglu E. 2013; The effects of serum cholesterol, LDL, and HDL levels on gallstone cholesterol concentration. Pak J Med Sci. 29:187–190. DOI: 10.12669/pjms.291.2798. PMID: 24353537. PMCID: PMC3809189.
Article
85. Fu X, Gong K, Shao X. 1995; The relationship between serum lipids, apolipoproteins level and bile lipids level, chemical type of stone. Zhonghua Yi Xue Za Zhi. 75:656–659. 708
86. Lavoie B, Nausch B, Zane EA, et al. 2012; Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 24:e313–e324. DOI: 10.1111/j.1365-2982.2012.01935.x. PMID: 22621672. PMCID: PMC3378777.
Article
87. Wang HH, Portincasa P, Wang DQ. 2019; Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 26:3407–3423. DOI: 10.2174/0929867324666170619104801. PMID: 28625150. PMCID: PMC8118134.
Article
88. Kanto J, Katevuo K. 1981; The effect of drugs with different mechanisms of action on the contraction of the human gallbladder. Int J Clin Pharmacol Ther Toxicol. 19:303–309.
89. Dai X, Shen L. 2022; Advances and trends in omics technology development. Front Med (Lausanne). 9:911861. DOI: 10.3389/fmed.2022.911861. PMID: 35860739. PMCID: PMC9289742.
Article
90. Yamada R, Okada D, Wang J, Basak T, Koyama S. 2021; Interpretation of omics data analyses. J Hum Genet. 66:93–102. DOI: 10.1038/s10038-020-0763-5. PMID: 32385339. PMCID: PMC7728595.
Article
91. Buch S, Schafmayer C, Völzke H, et al. 2007; A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet. 39:995–999. DOI: 10.1038/ng2101. PMID: 17632509.
Article
92. Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. 2014; ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta. 428:82–88. DOI: 10.1016/j.cca.2013.11.010. PMID: 24252657.
Article
93. Lauridsen BK, Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. 2015; Genetic variation in the cholesterol transporter NPC1L1, ischaemic vascular disease, and gallstone disease. Eur Heart J. 36:1601–1608. DOI: 10.1093/eurheartj/ehv108. PMID: 25841872.
Article
94. Betters JL, Yu L. 2010; NPC1L1 and cholesterol transport. FEBS Lett. 584:2740–2747. DOI: 10.1016/j.febslet.2010.03.030. PMID: 20307540. PMCID: PMC2909875.
Article
95. Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. 2021; Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr. 9:6882–6891. DOI: 10.1002/fsn3.2600. PMID: 34925816. PMCID: PMC8645708.
Article
96. Li R, Liu Y, Shi J, et al. 2019; Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1124–1133. DOI: 10.1016/j.bbalip.2019.04.010. PMID: 31054325.
Article
97. Mohammadi A, Bazrafshani MR, Oshaghi EA. 2013; Effect of garlic extract on some serum biochemical parameters and expression of npc1l1, abca1, abcg5 and abcg8 genes in the intestine of hypercholesterolemic mice. Indian J Biochem Biophys. 50:500–504.
98. Gu J, Zhu N, Li HF, et al. 2022; Ezetimibe and cancer: Is there a connection? Front Pharmacol. 13:831657. DOI: 10.3389/fphar.2022.831657. PMID: 35924044. PMCID: PMC9340271.
Article
99. Yang B, Liu B, Bi P, Wu T, Wang Q, Zhang J. 2015; An integrated analysis of differential miRNA and mRNA expressions in human gallstones. Mol Biosyst. 11:1004–1011. DOI: 10.1039/C4MB00741G. PMID: 25639987.
Article
100. Wang G, Zhang H, Zhou Z, et al. 2023; AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med. 29:116. DOI: 10.1186/s10020-023-00712-8. PMID: 37641009. PMCID: PMC10463418.
Article
101. Guman MSS, Hoozemans JB, Haal S, et al. 2022; Adipose tissue, bile acids, and gut microbiome species associated with gallstones after bariatric surgery. J Lipid Res. 63:100280. DOI: 10.1016/j.jlr.2022.100280. PMID: 36115596. PMCID: PMC9672443.
Article
102. Casertano M, Trotta MC, Cenni S, et al. 2024; Infliximab therapy decreases the expression of serum and faecal miR-126 and miR-20a in paediatric Crohn's disease: A pilot study. Acta Paediatr. 113:590–597. DOI: 10.1111/apa.17072. PMID: 38140840.
Article
103. Wei J, Chen T, Liu Y, et al. 2023; Targeted bile acids metabolomics in cholesterol gallbladder polyps and gallstones: From analytical method development towards application to clinical samples. J Pharm Anal. 13:1080–1087. DOI: 10.1016/j.jpha.2023.06.003. PMID: 37842658. PMCID: PMC10568091.
Article
104. Slyshenkov VS, Rakowska M, Wojtczak L. 1996; Protective effect of pantothenic acid and related compounds against permeabilization of Ehrlich ascites tumour cells by digitonin. Acta Biochim Pol. 43:407–410. DOI: 10.18388/abp.1996_4512. PMID: 8862188.
Article
105. Akram M. 2014; Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys. 68:475–478. DOI: 10.1007/s12013-013-9750-1. PMID: 24068518.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr