1. Chen W, Linthicum B, Argon NT, Bohrmann T, Lopiano K, Mehrotra A, et al. The effects of emergency department crowding on triage and hospital admission decisions. Am J Emerg Med. 2020; 38(4):774–9.
https://doi.org/10.1016/j.ajem.2019.06.039.
Article
3. Dinh MM, Russell SB, Bein KJ, Rogers K, Muscatello D, Paoloni R, et al. The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: a derivation and internal validation study using retrospective state-wide data from New South Wales, Australia. BMC Emerg Med. 2016; 16(1):46.
https://doi.org/10.1186/s12873-016-0111-4.
Article
4. Zhang X, Kim J, Patzer RE, Pitts SR, Patzer A, Schrager JD. Prediction of emergency department hospital admission based on natural language processing and neural networks. Methods Inf Med. 2017; 56(5):377–89.
https://doi.org/10.3414/ME17-01-0024.
Article
5. Jones D, Cameron A, Lowe DJ, Mason SM, O’Keeffe CA, Logan E. Multicentre, prospective observational study of the correlation between the Glasgow Admission Prediction Score and adverse outcomes. BMJ Open. 2019; 9(8):e026599.
https://doi.org/10.1136/bmjopen-2018-026599.
Article
8. Parker CA, Liu N, Wu SX, Shen Y, Lam SS, Ong ME. Predicting hospital admission at the emergency department triage: a novel prediction model. Am J Emerg Med. 2019; 37(8):1498–504.
https://doi.org/10.1016/j.ajem.2018.10.060.
12. Sanchez-Salmeron R, Gomez-Urquiza JL, Albendin-Garcia L, Correa-Rodriguez M, Martos-Cabrera MB, Velando-Soriano A, et al. Machine learning methods applied to triage in emergency services: a systematic review. Int Emerg Nurs. 2022; 60:101109.
https://doi.org/10.1016/j.ienj.2021.101109.
13. Fernandes M, Vieira SM, Leite F, Palos C, Finkelstein S, Sousa JM. Clinical decision support systems for triage in the emergency department using intelligent systems: a review. Artif Intell Med. 2020; 102:101762.
https://doi.org/10.1016/j.artmed.2019.101762.
Article
14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71.
https://doi.org/10.1136/bmj.n71.
Article
15. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014; 11(10):e1001744.
https://doi.org/10.1371/journal.pmed.1001744.
Article
16. Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019; 170(1):51–8.
https://doi.org/10.7326/M18-1376.
18. Peck JS, Gaehde SA, Nightingale DJ, Gelman DY, Huckins DS, Lemons MF, et al. Generalizability of a simple approach for predicting hospital admission from an emergency department. Acad Emerg Med. 2013; 20(11):1156–63.
https://doi.org/10.1111/acem.12244.
Article
19. Xie F, Zhou J, Lee JW, Tan M, Li S, Rajnthern LS, et al. Benchmarking emergency department prediction models with machine learning and public electronic health records. Sci Data. 2022; 9(1):658.
https://doi.org/10.1038/s41597-022-01782-9.
Article
20. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann Emerg Med. 2018; 71(5):565–74.
https://doi.org/10.1016/j.annemergmed.2017.08.005.
21. Raita Y, Goto T, Faridi MK, Brown DF, Camargo CA Jr, Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care. 2019; 23(1):64.
https://doi.org/10.1186/s13054-019-2351-7.
22. Tschoellitsch T, Seidl P, Bock C, Maletzky A, Moser P, Thumfart S, et al. Using emergency department triage for machine learning-based admission and mortality prediction. Eur J Emerg Med. 2023; 30(6):408–16.
https://doi.org/10.1097/MEJ.0000000000001068.
24. Handly N, Thompson DA, Li J, Chuirazzi DM, Venkat A. Evaluation of a hospital admission prediction model adding coded chief complaint data using neural network methodology. Eur J Emerg Med. 2015; 22(2):87–91.
https://doi.org/10.1097/MEJ.0000000000000126.
26. Rendell K, Koprinska I, Kyme A, Ebker-White AA, Dinh MM. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making. Emerg Med Australas. 2019; 31(3):429–35.
https://doi.org/10.1111/1742-6723.13199.
28. Lee JT, Hsieh CC, Lin CH, Lin YJ, Kao CY. Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department. Sci Rep. 2021; 11(1):19472.
https://doi.org/10.1038/s41598-021-98961-2.
29. Zlotnik A, Alfaro MC, Perez MC, Gallardo-Antolin A, Martinez JM. Building a decision support system for inpatient admission prediction with the Manchester triage system and administrative check-in variables. Comput Inform Nurs. 2016; 34(5):224–30.
https://doi.org/10.1097/CIN.0000000000000230.
30. Kim M, Park S, Kim C, Choi M. Diagnostic accuracy of clinical outcome prediction using nursing data in intensive care patients: a systematic review. Int J Nurs Stud. 2023; 138:104411.
https://doi.org/10.1016/j.ijnurstu.2022.104411.