Prog Med Phys.  2024 Dec;35(4):155-162. 10.14316/pmp.2024.35.4.155.

Dosimetric Comparison of Stereotactic Radiosurgery for Brain Metastases: Volumetric Modulated Arc Therapy vs. Dynamic Conformal Arc

Affiliations
  • 1Department of Radiation Oncology, Kosin University Gospel Hospital, Busan, Korea
  • 2Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Korea
  • 3Department of Radiation Oncology, Kosin University College of Medicine, Busan, Korea

Abstract

Purpose
This study aimed to compare the dose characteristics of the volumetric modulated arc therapy (VMAT) and dynamic conformal arc (DCA) techniques for metastatic brain tumor treatment using various indices to evaluate the quality of the plan and provide insights into the clinical implications of each approach.
Methods
Twelve patients with single metastatic brain tumors treated with VMAT were retrospectively analyzed. For comparison with DCA, identical geometric parameters (excluding multileaf collimators) were applied. Dose coverage, normal tissue sparing, and treatment efficiency were evaluated using indices such as CILIM98 , CIICRU , CIRTOG , QCRTOG , CISALT , HTCISALT , and CIPADDIC . These indices were statistically assessed to evaluate the differences between VMAT and DCA.
Results
VMAT was superior to DCA in most indices for both small and large planning target volumes (PTVs). DCA plans for large PTVs showed a higher V12Gy , exceeding 10 mL and failing to meet the recommended criteria (<10 mL). However, DCA required nearly half the monitor units (MUs) of VMAT, resulting in shorter treatment times. All indices, except for QCRTOG , demonstrated significant differences between VMAT and DCA.
Conclusions
Careful consideration is necessary for larger PTVs when deciding a plan because DCA can occasionally result in V12Gy of a brain minus PTV >10 mL. Conversely, DCA provides the advantage of shorter treatment times because of its lower MU. This study highlights the importance of using a combination of indices to comprehensively assess treatment plan quality.

Keyword

Stereotactic radiosurgery; Dynamic conformal arc; Volumetric modulated arc therapy; Conformity index; Treatment planning

Figure

  • Fig. 1 Example of the plan geometry for one of the 12 patients. For the centrally located PTV, both the VMAT and DCA plans utilized five evenly distributed arc fields optimized for uniform dose delivery. PTV, planning target volume; VMAT, volumetric modulated arc therapy; DCA, dynamic conformal arc.

  • Fig. 2 Dose–volume histogram of the brain minus PTV in the absolute volume for patient 1. The black solid line represents VMAT, and the red dotted line represents DCA. V12Gy values of the brain minus PTV are 6.00 cc for VMAT and 7.26 cc for DCA. PTV, planning target volume; VMAT, volumetric modulated arc therapy; DCA, dynamic conformal arc.


Reference

References

1. Deodato F, Cilla S, Macchia G, Torre G, Caravatta L, Mariano G, et al. 2014; Stereotactic radiosurgery (SRS) with volumetric modulated arc therapy (VMAT): interim results of a multi-arm phase I trial (DESTROY-2). Clin Oncol (R Coll Radiol). 26:748–756. DOI: 10.1016/j.clon.2014.08.005. PMID: 25175042.
2. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. 1993; Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 27:1231–1239. DOI: 10.1016/0360-3016(93)90548-A. PMID: 8262852.
3. Ladbury C, Pennock M, Yilmaz T, Ankrah NK, Andraos T, Gogineni E, et al. 2023; Stereotactic radiosurgery in the management of brain metastases: a case-based radiosurgery society practice guideline. Adv Radiat Oncol. 9:101402. DOI: 10.1016/j.adro.2023.101402. PMID: 38292892. PMCID: PMC10823095.
4. Soffietti R, Rudà R, Trevisan E. 2008; Brain metastases: current management and new developments. Curr Opin Oncol. 20:676–684. DOI: 10.1097/CCO.0b013e32831186fe. PMID: 18841050.
5. Grishchuk D, Dimitriadis A, Sahgal A, De Salles A, Fariselli L, Kotecha R, et al. 2023; ISRS technical guidelines for Stereotactic Radiosurgery: treatment of small brain metastases (≤1 cm in diameter). Pract Radiat Oncol. 13:183–194. DOI: 10.1016/j.prro.2022.10.013. PMID: 36435388.
6. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. 2000; Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 47:291–298. DOI: 10.1016/S0360-3016(99)00507-6. PMID: 10802351.
7. Lehrer EJ, Peterson JL, Zaorsky NG, Brown PD, Sahgal A, Chiang VL, et al. 2019; Single versus multifraction stereotactic radiosurgery for large brain metastases: an international meta-analysis of 24 trials. Int J Radiat Oncol Biol Phys. 103:618–630. DOI: 10.1016/j.ijrobp.2018.10.038. PMID: 30395902.
8. Chang EL, Selek U, Hassenbusch SJ 3rd, Maor MH, Allen PK, Mahajan A, et al. 2005; Outcome variation among "radioresistant" brain metastases treated with stereotactic radiosurgery. Neurosurgery. 56:936–945. discussion 936-945.
9. Schiff D, Messersmith H, Brastianos PK, Brown PD, Burri S, Dunn IF, et al. 2022; Radiation therapy for brain metastases: ASCO guideline endorsement of ASTRO guideline. J Clin Oncol. 40:2271–2276. DOI: 10.1200/JCO.22.00333. PMID: 35561283.
10. Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, et al. 2000; Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 46:1143–1148. DOI: 10.1016/S0360-3016(99)00513-1. PMID: 10725624.
11. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. 2010; Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 77:996–1001. DOI: 10.1016/j.ijrobp.2009.06.006. PMID: 19783374.
12. Lee J, Kim HJ, Kim WC. 2023; CyberKnife-based stereotactic radiosurgery or fractionated stereotactic radiotherapy in older patients with brain metastases from non-small cell lung cancer. Radiat Oncol J. 41:258–266. DOI: 10.3857/roj.2023.00563. PMID: 38185930. PMCID: PMC10772598.
13. Fiagbedzi E, Hasford F, Tagoe SN. 2024; Impact of planning target volume margins in stereotactic radiosurgery for brain metastasis: a review. Prog Med Phys. 35:1–9. DOI: 10.14316/pmp.2024.35.1.1.
14. Oshiro Y, Mizumoto M, Kato Y, Tsuchida Y, Tsuboi K, Sakae T, et al. 2024; Single isocenter dynamic conformal arcs-based radiosurgery for brain metastases: dosimetric comparison with Cyberknife and clinical investigation. Tech Innov Patient Support Radiat Oncol. 29:100235. DOI: 10.1016/j.tipsro.2024.100235. PMID: 38299171. PMCID: PMC10827586.
15. Chambrelant I, Jarnet D, Le Fèvre C, Kuntz L, Jacob J, Jenny C, et al. 2024; Comparative study of dynamic conformal arc therapy and volumetric modulated arc therapy for treating single brain metastases: a retrospective analysis of dosimetric and clinical outcomes. Phys Imaging Radiat Oncol. 30:100591. DOI: 10.1016/j.phro.2024.100591. PMID: 38832123. PMCID: PMC11145388.
16. He Z, Ho MKJ, Lee WYV, Law HY, Wong YWV, Leung TW, et al. 2023; Frameless versus frame-based stereotactic radiosurgery for intracranial arteriovenous malformations: a propensity-matched analysis. Clin Transl Radiat Oncol. 41:100642. DOI: 10.1016/j.ctro.2023.100642. PMID: 37304170. PMCID: PMC10248791.
17. Wen N, Snyder KC, Scheib SG, Schmelzer P, Qin Y, Li H, et al. 2016; Technical note: evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 43:2527. DOI: 10.1118/1.4947199. PMID: 27147363.
18. Minniti G, Scaringi C, Clarke E, Valeriani M, Osti M, Enrici RM. 2011; Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes. Radiat Oncol. 6:158. DOI: 10.1186/1748-717X-6-158. PMID: 22085700. PMCID: PMC3253058.
19. Feuvret L, Noël G, Mazeron JJ, Bey P. 2006; Conformity index: a review. Int J Radiat Oncol Biol Phys. 64:333–342. DOI: 10.1016/j.ijrobp.2005.09.028. PMID: 16414369.
20. Stanley J, Breitman K, Dunscombe P, Spencer DP, Lau H. 2011; Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases. J Appl Clin Med Phys. 12:245–253. DOI: 10.1120/jacmp.v12i2.3449. PMID: 21587193. PMCID: PMC5718686.
21. Paddick I. 2000; A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 93 Suppl 3:219–222. DOI: 10.3171/jns.2000.93.supplement_3.0219. PMID: 11143252.
22. Molinier J, Kerr C, Simeon S, Ailleres N, Charissoux M, Azria D, et al. 2016; Comparison of volumetric-modulated arc therapy and dynamic conformal arc treatment planning for cranial stereotactic radiosurgery. J Appl Clin Med Phys. 17:92–101. DOI: 10.1120/jacmp.v17i1.5677. PMID: 26894335. PMCID: PMC5690199.
23. Torizuka D, Uto M, Takehana K, Mizowaki T. 2021; Dosimetric comparison among dynamic conformal arc therapy, coplanar and non-coplanar volumetric modulated arc therapy for single brain metastasis. J Radiat Res. 62:1114–1119. DOI: 10.1093/jrr/rrab092. PMID: 34604907.
24. Kuperman VY, Altundal Y, Kandel S, Kouskoulas TN. 2024; Dose conformity and falloff in single-lesion intracranial SRS with DCA and VMAT methods. J Appl Clin Med Phys. 25:e14415. DOI: 10.1002/acm2.14415. PMID: 38924344. PMCID: PMC11492423.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr