Prog Med Phys.  2024 Dec;35(4):73-88. 10.14316/pmp.2024.35.4.73.

Principle, Development, and Application of Electrical Conductivity Mapping Using Magnetic Resonance Imaging

Affiliations
  • 1Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
  • 2Department of Mathematics, College of Basic Science, Konkuk University, Seoul, Korea

Abstract

Magnetic resonance imaging (MRI)-related techniques can provide information related to the electrical properties of the body. Understanding the electrical properties of human tissues is crucial for developing diagnostic tools and therapeutic approaches for various medical conditions. This study reviewed the principles, development, and application of electrical conductivity mapping using MRI. To review the magnetic resonance electrical properties tomography (MREPT)-based conductivity mapping technique and its application to brain imaging, first, we explain the definition and fundamental principles of electrical conductivity, some factors that influence changes in ionic conductivity, and the background of mapping cellular conductivities. Second, we explain the concepts and applications of magnetic resonance electrical impedance tomography (MREIT) and MREPT. Third, we describe our recent technical developments and their clinical applications. Finally, we explain the benefits, impacts, and challenges of MRI-based conductivity in clinical practice. MRI techniques, such as MREIT and MREPT, enabled the measurement of conductivity-related properties within the body. MREIT assessed low-frequency conductivity by applying a lowfrequency external current, whereas MREPT captured high-frequency conductivity (at the Larmor frequency) without applying an external current. In MREIT, the subject’s safety should be ensured because electrical current is applied, particularly around sensitive areas, such as the brain, or in subjects with implanted electronic devices. Our previous studies have highlighted the potential of conductivity indices as biomarkers for Alzheimer’s disease. MREPT is usually applied to humans rather than MREIT. MREPT holds promise as a noninvasive tool for characterizing tissue properties and understanding pathological conditions.

Keyword

MRI; B1 phase; Conductivity; Brain application

Figure

  • Fig. 1 Graphical explanation of the MREIT method. In MREIT, electrodes are attached to the subject’s surface at specified locations, such as brain areas without hair. The magnetic resonance imaging phase is used to obtain the Bz Field, which is the component of the magnetic field induced by the applied current. The Bz component is located along the direction of the main magnetic field. After calculating the Bz component, the current density within the subject is calculated by applying Ampere’s Law and/or the Biot–Savart Law. Because the applied current is known, this step allows the reconstruction of the current paths in the tissue. Finally, using mathematical algorithms (e.g., J-substitution algorithm), conductivity images are reconstructed based on the measured magnetic flux density and applied current density. MREIT, magnetic resonance electrical impedance tomography.

  • Fig. 2 Summary of the technical development to map the HFC and low-frequency conductivity using MREPT and MC-SMT images. In MREPT, (a) a standard magnetic resonance imaging scan is performed using a sequence that is sensitive to phase information, such as a turbo spin-echo sequence or balanced fast field-echo sequence. Furthermore, (b) diffusion tensor images with three b-values and multiple gradient directions are acquired to obtain microstructure information. The spatial distribution of the radiofrequency field (B1) is calculated from the phase images. (c) The HFC is calculated with a double derivative of the B1 field by applying a regularization. (d) The MC-SMT is used to map intrinsic diffusion coefficient, intra-neurite volume fraction, and extra-neurite mean diffusivity. (e) The low-frequency conductivity map can be calculated with the recovered HFC and MC-SMT maps. (f) The extra-neurite tensor maps are obtained using MC-SMT maps. (g) The low-frequency conductivity tensor map can be calculated using (c) and (f). HFC, high-frequency conductivity; MREPT, magnetic resonance electrical properties tomography; MC-SMT, multicompartment spherical mean technique.

  • Fig. 3 Representative maps are obtained from two imaging slices acquired from one young participant. Maps are shown as the high-frequency conductivity (HFC), intrinsic diffusion coefficient (Dint), intra-neurite volume fraction (νint), extra-neurite diffusivity (Dext), and low-frequency conductivity tensor.

  • Fig. 4 3D T1-weighted image (3DT1) and the corresponding segmented brain tissues of gray matter volume (GMV), white matter volume (WMV), and cerebrospinal fluid (CSF) volume and a high-frequency conductivity (HFC) map acquired from one cognitively normal (CN) older participant and a patient with Alzheimer’s disease (AD).

  • Fig. 5 T1-weighted (T1W) image and conductivity maps of the high-frequency conductivity (HFC) and the corresponding extra-neurite conductivity (EC) and intra-neurite conductivity (IC) acquired from one cognitively normal (CN) older participant and a patient with Alzheimer’s disease (AD).


Reference

References

1. Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R. 2012; Na+ and K+ ion imbalances in Alzheimer's disease. Biochim Biophys Acta. 1822:1671–1681. DOI: 10.1016/j.bbadis.2012.07.004. PMID: 22820549. PMCID: PMC3444663.
2. Andersen AP, Moreira JM, Pedersen SF. 2014; Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci. 369:20130098. DOI: 10.1098/rstb.2013.0098. PMID: 24493746. PMCID: PMC3917352.
3. Fox DM, Tseng HA, Smolinski TG, Rotstein HG, Nadim F. 2017; Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol. 13:e1005565. DOI: 10.1371/journal.pcbi.1005565. PMID: 28582395. PMCID: PMC5476304.
4. Schalenbach M, Durmus YE, Tempel H, Kungl H, Eichel RA. 2022; Ion transport and limited currents in supporting electrolytes and ionic liquids. Sci Rep. 12:6215. DOI: 10.1038/s41598-022-10183-2. PMID: 35418198. PMCID: PMC9008042.
5. Pennati F, Angelucci A, Morelli L, Bardini S, Barzanti E, Cavallini F, et al. 2023; Electrical impedance tomography: from the traditional design to the novel frontier of wearables. Sensors (Basel). 23:1182. DOI: 10.3390/s23031182. PMID: 36772222. PMCID: PMC9921522.
6. Cui Z, Liu X, Qu H, Wang H. 2024; Technical principles and clinical applications of electrical impedance tomography in pulmonary monitoring. Sensors (Basel). 24:4539. DOI: 10.3390/s24144539. PMID: 39065936. PMCID: PMC11281055.
7. Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. 2019; Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules. 9:448. DOI: 10.3390/biom9090448. PMID: 31487913. PMCID: PMC6770812.
8. Gibby WAT, Barabash ML, Guardiani C, Luchinsky DG, McClintock PVE. 2021; Physics of selective conduction and point mutation in biological ion channels. Phys Rev Lett. 126:218102. DOI: 10.1103/PhysRevLett.126.218102. PMID: 34114848.
9. Jeong WC, Sajib SZ, Katoch N, Kim HJ, Kwon OI, Woo EJ. 2017; Anisotropic conductivity tensor imaging of in vivo canine brain using DT-MREIT. IEEE Trans Med Imaging. 36:124–131. DOI: 10.1109/TMI.2016.2598546. PMID: 28055828.
10. Jahng GH, Lee MB, Kim HJ, Je Woo E, Kwon OI. 2021; Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current. Neuroimage. 225:117466. DOI: 10.1016/j.neuroimage.2020.117466. PMID: 33075557.
11. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW. 2001; Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci U S A. 98:11697–11701. DOI: 10.1073/pnas.171473898. PMID: 11573005. PMCID: PMC58792.
12. Hu M, Ling Z, Ren X. 2022; Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng. 16:13. DOI: 10.1186/s13036-022-00292-x. PMID: 35637526. PMCID: PMC9153193.
13. Romanova DY, Balaban PM, Nikitin ES. 2022; Sodium channels involved in the initiation of action potentials in invertebrate and mammalian neurons. Biophysica. 2:184–193. DOI: 10.3390/biophysica2030019.
14. Tholen LE, Hoenderop JGJ, de Baaij JHF. 2022; Mechanisms of ion transport regulation by HNF1β in the kidney: beyond transcriptional regulation of channels and transporters. Pflugers Arch. 474:901–916. DOI: 10.1007/s00424-022-02697-5. PMID: 35554666. PMCID: PMC9338905.
15. Kujawska T, Secomski W, Kruglenko E, Krawczyk K, Nowicki A. 2014; Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound. PLoS One. 9:e94929. DOI: 10.1371/journal.pone.0094929. PMID: 24743838. PMCID: PMC3990557.
16. Hunter RW, Bailey MA. 2019; Hyperkalemia: pathophysiology, risk factors and consequences. Nephrol Dial Transplant. 34(Suppl 3):iii2–iii11. DOI: 10.1093/ndt/gfz206. PMID: 31800080. PMCID: PMC6892421.
17. Jeon K, Minhas AS, Kim YT, Jeong WC, Kim HJ, Kang BT, et al. 2009; MREIT conductivity imaging of the postmortem canine abdomen using CoReHA. Physiol Meas. 30:957–966. DOI: 10.1088/0967-3334/30/9/007. PMID: 19661564.
18. Jeong WC, Sajib S, Kim HJ, Kwon OI. 2014; Focused current density imaging using internal electrode in magnetic resonance electrical impedance tomography (MREIT). IEEE Trans Biomed Eng. 61:1938–1946. DOI: 10.1109/TBME.2014.2306913. PMID: 24956612.
19. Kim HJ, Jeong WC, Sajib SZ, Kim MO, Kwon OI, Je Woo E, et al. 2014; Simultaneous imaging of dual-frequency electrical conductivity using a combination of MREIT and MREPT. Magn Reson Med. 71:200–208. DOI: 10.1002/mrm.24642. PMID: 23400804.
20. Kwon OI, Jeong WC, Sajib SZ, Kim HJ, Woo EJ, Oh TI. 2014; Reconstruction of dual-frequency conductivity by optimization of phase map in MREIT and MREPT. Biomed Eng Online. 13:24. DOI: 10.1186/1475-925X-13-24. PMID: 24607262. PMCID: PMC3995946.
21. Seo JK, Woo EJ. 2011; Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev Soc Ind Appl Math. 53:40–68. DOI: 10.1137/080742932.
22. Kim DH, Chauhan M, Kim MO, Jeong WC, Kim HJ, Sersa I, et al. 2015; Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method. IEEE Trans Med Imaging. 34:507–513. DOI: 10.1109/TMI.2014.2361689. PMID: 25312916.
23. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dössel O. 2009; Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging. 28:1365–1374. DOI: 10.1109/TMI.2009.2015757. PMID: 19369153.
24. Lee SK, Bulumulla S, Hancu I. 2015; Theoretical investigation of random noise-limited signal-to-noise ratio in MR-based electrical properties tomography. IEEE Trans Med Imaging. 34:2220–2232. DOI: 10.1109/TMI.2015.2427236. PMID: 25955582. PMCID: PMC4628908.
25. Voigt T, Katscher U, Doessel O. 2011; Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med. 66:456–466. DOI: 10.1002/mrm.22832. PMID: 21773985.
26. Haacke EM, Petropoulos LS, Nilges EW, Wu DH. 1991; Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol. 36:723–734. DOI: 10.1088/0031-9155/36/6/002.
27. Lee MB, Kim HJ, Kwon OI. 2021; Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI. Biomed Eng Online. 20:29. DOI: 10.1186/s12938-021-00869-5. PMID: 33766044. PMCID: PMC7993544.
28. Lee MB, Jahng GH, Kim HJ, Woo EJ, Kwon OI. 2020; Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imaging. PLoS One. 15:e0230903. DOI: 10.1371/journal.pone.0230903. PMID: 32267858. PMCID: PMC7141654.
29. Sekino M, Ohsaki H, Yamaguchi-Sekino S, Iriguchi N, Ueno S. 2009; Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI. Bioelectromagnetics. 30:489–499. DOI: 10.1002/bem.20505. PMID: 19437459.
30. Wu Z, Liu Y, Hong M, Yu X. 2018; A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging. Med Biol Eng Comput. 56:1325–1332. DOI: 10.1007/s11517-018-1845-9. PMID: 29855784.
31. Sajib SZK, Kwon OI, Kim HJ, Woo EJ. 2018; Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments. Biomed Eng Lett. 8:273–282. DOI: 10.1007/s13534-018-0066-3. PMID: 30603211. PMCID: PMC6208539.
32. Sajib SZK, Chauhan M, Sahu S, Boakye E, Sadleir RJ. 2024; Validation of conductivity tensor imaging against diffusion tensor magnetic resonance electrical impedance tomography. Sci Rep. 14:17995. DOI: 10.1038/s41598-024-68551-z. PMID: 39097661. PMCID: PMC11297941.
33. Choi BK, Katoch N, Park JA, Kim JW, Oh TI, Kim HJ, et al. 2023; Measurement of extracellular volume fraction using magnetic resonance-based conductivity tensor imaging. Front Physiol. 14:1132911. DOI: 10.3389/fphys.2023.1132911. PMID: 36875031. PMCID: PMC9983119.
34. Gabriel C, Peyman A, Grant EH. 2009; Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 54:4863–4878. DOI: 10.1088/0031-9155/54/16/002. PMID: 19636081.
35. Gabriel S, Lau RW, Gabriel C. 1996; The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 41:2251–2269. DOI: 10.1088/0031-9155/41/11/002. PMID: 8938025.
36. Oh TI, Kim HB, Jeong WC, Sajib SZK, Kyung EJ, Kim HJ, et al. 2015; Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography. Appl Phys Lett. 107:023701. DOI: 10.1063/1.4926920.
37. Gurler N, Ider YZ. 2017; Gradient-based electrical conductivity imaging using MR phase. Magn Reson Med. 77:137–150. DOI: 10.1002/mrm.26097. PMID: 26762771.
38. Park S, Jung SM, Lee MB, Rhee HY, Ryu CW, Cho AR, et al. 2022; Application of high-frequency conductivity map using MRI to evaluate it in the brain of Alzheimer's disease patients. Front Neurol. 13:872878. DOI: 10.3389/fneur.2022.872878. PMID: 35651350. PMCID: PMC9150564.
39. Hong S, Choi Y, Lee MB, Rhee HY, Park S, Ryu CW, et al. 2024; Increased extra-neurite conductivity of brain in patients with Alzheimer's disease: a pilot study. Psychiatry Res Neuroimaging. 340:111807. DOI: 10.1016/j.pscychresns.2024.111807. PMID: 38520873.
40. Shin J, Kim MJ, Lee J, Nam Y, Kim MO, Choi N, et al. 2015; Initial study on in vivo conductivity mapping of breast cancer using MRI. J Magn Reson Imaging. 42:371–378. DOI: 10.1002/jmri.24803. PMID: 25413153.
41. Kim SY, Shin J, Kim DH, Kim MJ, Kim EK, Moon HJ, et al. 2016; Correlation between conductivity and prognostic factors in invasive breast cancer using magnetic resonance electric properties tomography (MREPT). Eur Radiol. 26:2317–2326. DOI: 10.1007/s00330-015-4067-7. PMID: 26497503.
42. van der Cruijsen J, Piastra MC, Selles RW, Oostendorp TF. 2021; A method to experimentally estimate the conductivity of chronic stroke lesions: a tool to individualize transcranial electric stimulation. Front Hum Neurosci. 15:738200. DOI: 10.3389/fnhum.2021.738200. PMID: 34712128. PMCID: PMC8546262.
43. Kim SY, Shin J, Kim DH, Kim EK, Moon HJ, Yoon JH, et al. 2018; Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging. Eur Radiol. 28:3204–3214. DOI: 10.1007/s00330-017-5291-0. PMID: 29511804.
44. Wang Y, Li Y, Huang J, Zhang Y, Ma R, Zhang S, et al. 2021; Correlation between electrical characteristics and biomarkers in breast cancer cells. Sci Rep. 11:14294. DOI: 10.1038/s41598-021-93793-6. PMID: 34253828. PMCID: PMC8275571.
45. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. 2016; Multi-compartment microscopic diffusion imaging. Neuroimage. 139:346–359. DOI: 10.1016/j.neuroimage.2016.06.002. PMID: 27282476. PMCID: PMC5517363.
46. Baumann SB, Wozny DR, Kelly SK, Meno FM. 1997; The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng. 44:220–223. DOI: 10.1109/10.554770. PMID: 9216137.
47. Marino M, Cordero-Grande L, Mantini D, Ferrazzi G. 2021; Conductivity tensor imaging of the human brain using water mapping techniques. Front Neurosci. 15:694645. DOI: 10.3389/fnins.2021.694645. PMID: 34393709. PMCID: PMC8363203.
48. Chabert S, Scifo P. 2007; Diffusion signal in magnetic resonance imaging: origin and interpretation in neurosciences. Biol Res. 40:385–400. DOI: 10.4067/S0716-97602007000500003. PMID: 18575674.
49. Arevalo-Rodriguez I, Smailagic N, Roqué IFM, Ciapponi A, Sanchez-Perez E, Giannakou A, et al. 2015; Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015:CD010783. DOI: 10.1002/14651858.CD010783.pub2.
50. Tha KK, Katscher U, Yamaguchi S, Stehning C, Terasaka S, Fujima N, et al. 2018; Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma. Eur Radiol. 28:348–355. DOI: 10.1007/s00330-017-4942-5. PMID: 28698943.
51. Wang Y, Shao Q, Van de Moortele PF, Racila E, Liu J, Bischof J, et al. 2019; Mapping electrical properties heterogeneity of tumor using boundary informed electrical properties tomography (BIEPT) at 7T. Magn Reson Med. 81:393–409. DOI: 10.1002/mrm.27414. PMID: 30230603. PMCID: PMC6258314.
52. Lee JI, Gemerzki L, Weise M, Boerker L, Graf J, Jansen L, et al. 2020; Retinal layers and visual conductivity changes in a case series of microangiopathic ischemic stroke patients. BMC Neurol. 20:333. DOI: 10.1186/s12883-020-01894-y. PMID: 32883246. PMCID: PMC7469096.
53. Lin CY, Mathur M, Malinowski M, Timek TA, Rausch MK. 2023; The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue. Biomech Model Mechanobiol. 22:1487–1498. DOI: 10.1007/s10237-022-01640-y. PMID: 36284075. PMCID: PMC10231866.
54. Kim JW, Park JA, Katoch N, Yang JU, Park S, Choi BK, et al. 2021; Image-based evaluation of irradiation effects in brain tissues by measuring absolute electrical conductivity using MRI. Cancers (Basel). 13:5490. DOI: 10.3390/cancers13215490. PMID: 34771653. PMCID: PMC8583433.
55. Park JA, Kim Y, Yang J, Choi BK, Katoch N, Park S, et al. 2022; Effects of irradiation on brain tumors using MR-based electrical conductivity imaging. Cancers (Basel). 15:22. DOI: 10.3390/cancers15010022. PMID: 36612018. PMCID: PMC9817812.
56. Gabriel S, Lau RW, Gabriel C. 1996; The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys Med Biol. 41:2271–2293. DOI: 10.1088/0031-9155/41/11/003. PMID: 8938026.
57. Porter E, Gioia AL, Elahi MA, Halloran MO. 2017. Aug. 19-26. Significance of heterogeneities in accurate dielectric measurements of biological tissues. Paper presented at: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal, QC, Canada: 1–4. DOI: 10.23919/URSIGASS.2017.8104989.
58. Foster KR, Schwan HP. 1989; Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 17:25–104.
59. Gabriel C, Gabriel S, Corthout E. 1996; The dielectric properties of biological tissues: I. literature survey. Phys Med Biol. 41:2231–2249. DOI: 10.1088/0031-9155/41/11/001. PMID: 8938024.
60. Joines WT, Zhang Y, Li C, Jirtle RL. 1994; The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys. 21:547–550. DOI: 10.1118/1.597312. PMID: 8058021.
61. Sajib SZK, Sadleir R. 2022; Magnetic resonance electrical impedance tomography. Adv Exp Med Biol. 1380:157–183. DOI: 10.1007/978-3-031-03873-0_7. PMID: 36306098.
62. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. 2012; NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 61:1000–1016. DOI: 10.1016/j.neuroimage.2012.03.072. PMID: 22484410.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr