Clin Transplant Res.  2024 Dec;38(4):326-340. 10.4285/ctr.24.0057.

Belatacept and regulatory T cells in transplantation: synergistic strategies for immune tolerance and graft survival

Affiliations
  • 1Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
  • 2Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
  • 3Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
  • 4Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Korea

Abstract

Calcineurin inhibitors (CNIs) have been a cornerstone in solid organ transplantation for many years; however, their prolonged use is linked to significant adverse effects, most notably nephrotoxicity. Belatacept, a modified version of cytotoxic T lymphocyte antigen-4 immunoglobulin with increased binding affinity for its ligand, has emerged as a viable alternative to traditional CNIs due to its lower toxicity profile. Despite these benefits, belatacept is associated with a higher rate of acute rejection, which presents a challenge for long-term graft survival. This review reevaluates the limitations of belatacept in achieving long-term acceptance of transplants and highlights the importance of regulatory T (Treg) cells in maintaining immune tolerance and preventing graft rejection. Additionally, it discusses the potential benefits of combining therapies that boost Treg cells with belatacept to increase the effectiveness of immunosuppression and improve graft outcomes.

Keyword

Abatacept; Transplantation; Regulatory T cells

Figure

  • Fig. 1 Historical overview of belatacept development. A historical overview of the understanding of belatacept development from 1991 to 2024 is provided. CTLA-4, cytotoxic T lymphocyte antigen-4; Ig, immunoglobulin; BENEFIT, Belatacept Evaluation of Nephroprotection and Efficacy as First-line Immunosuppression. Diagram created with BioRender.

  • Fig. 2 CD28 signaling in FOXP3 expression and the effects of belatacept. CD28 costimulatory signaling is essential for the induction and maintenance of FOXP3 by activating the PI3K-AKT-mTOR and RelA/NFκB signaling pathways. RelA binds to the FOXP3 promoter region to induce FOXP3 expression, whereas the PI3K pathway regulates chromatin remodeling to enhance FOXP3 expression. FOXP3 is the key transcription factor in Treg cells, promoting the expression of suppressive functional markers such as CD25, CTLA-4, IL-10, TGF-β, CD39 and CD73, which collectively suppress alloreactive conventional T cells. However, belatacept blocks this CD28 signaling pathway by inhibiting CD28 binding to CD80/86 on APCs, thereby reducing FOXP3 expression. APC, antigen-presenting cell; MHC, major histocompatibility complex; Treg, regulatory T; TCR, T cell receptor; mTOR, mammalian target of rapamycin; CTLA-4, cytotoxic T lymphocyte antigen-4; IL, interleukin; TGF, transforming growth factor. Diagram created with BioRender.

  • Fig. 3 Perspectives on therapeutic strategies for transplantation. Belatacept binds to CD80/86 on APCs, inhibiting the activation of alloreactive effector T cells by blocking CD28 signaling. However, it also inhibits CD28 signaling in Treg cells, impairing their differentiation and maintenance, and it cannot regulate CD28-negative T cells. Strategies that increase Treg cells, such as low-dose IL-2, can restore Treg cells inhibited by belatacept and effectively inhibit not only alloreactive effector T cells but also CD28-negative effector T cells. Combining belatacept with drugs that enhance Treg cells can effectively prevent graft rejection and maintain immune tolerance. Treg, regulatory T; TCR, T cell receptor; MHC, major histocompatibility complex; APC, antigen-presenting cell; IL, interleukin; IFN, interferon; CTLA-4, cytotoxic T lymphocyte antigen-4. Diagram created with BioRender.


Reference

1. Sawinski D, Trofe-Clark J, Leas B, Uhl S, Tuteja S, Kaczmarek JL, et al. 2016; Calcineurin inhibitor minimization, conversion, withdrawal, and avoidance strategies in renal transplantation: a systematic review and meta-analysis. Am J Transplant. 16:2117–38. DOI: 10.1111/ajt.13710. PMID: 26990455.
2. Groth CG, Bäckman L, Morales JM, Calne R, Kreis H, Lang P, et al. 1999; Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Transplantation. 67:1036–42. DOI: 10.1097/00007890-199904150-00017. PMID: 10221490.
3. Shrestha BM. 2017; Two decades of tacrolimus in renal transplant: basic science and clinical evidences. Exp Clin Transplant. 15:1–9.
4. Soldin SJ, Steele BW, Witte DL, Wang E, Elin RJ. College of American Pathologists Study. 2003; Lack of specificity of cyclosporine immunoassays: results of a College of American Pathologists study. Arch Pathol Lab Med. 127:19–22. DOI: 10.5858/2003-127-19-LOSOC. PMID: 12521361.
5. Li Q, Lan P. 2023; Activation of immune signals during organ transplantation. Signal Transduct Target Ther. 8:110. DOI: 10.1038/s41392-023-01377-9. PMID: 36906586. PMCID: PMC10008588.
6. Yousefpour P, Ni K, Irvine DJ. 2023; Targeted modulation of immune cells and tissues using engineered biomaterials. Nat Rev Bioeng. 1:107–24. DOI: 10.1038/s44222-022-00016-2. PMID: 37772035. PMCID: PMC10538251.
7. Vincenti F. 2008; Costimulation blockade in autoimmunity and transplantation. J Allergy Clin Immunol. 121:299–306. DOI: 10.1016/j.jaci.2008.01.002. PMID: 18269922.
8. Iannone F, Lapadula G. 2012; The inhibitor of costimulation of T cells: abatacept. J Rheumatol Suppl. 89:100–2. DOI: 10.3899/jrheum.120257. PMID: 22751606.
9. da Rosa LC, Scales HE, Benson RA, Brewer JM, McInnes IB, Garside P. 2024; The effect of abatacept on T-cell activation is not long-lived in vivo. Discov Immunol. 3:kyad029. DOI: 10.1093/discim/kyad029. PMID: 38567291. PMCID: PMC10917171.
10. Levisetti MG, Padrid PA, Szot GL, Mittal N, Meehan SM, Wardrip CL, et al. 1997; Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol. 159:5187–91. DOI: 10.4049/jimmunol.159.11.5187. PMID: 9548454.
11. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. 1994; Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1:793–801. DOI: 10.1016/S1074-7613(94)80021-9. PMID: 7534620.
12. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, et al. 2005; Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 5:44–53. DOI: 10.1111/j.1600-6143.2005.00749.x. PMID: 15707398.
13. Levitsky J, Miller J, Huang X, Chandrasekaran D, Chen L, Mathew JM. 2013; Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans. Transplantation. 96:689–96. DOI: 10.1097/TP.0b013e31829f1607. PMID: 23883971. PMCID: PMC3800494.
14. He X, Li S, Zhang J, Cao L, Yang C, Rong P, et al. 2021; Benefit of belatacept in cord blood-derived regulatory T cell-mediated suppression of alloimmune response. Cell Transplant. 30:9636897211046556. DOI: 10.1177/09636897211046556. PMID: 34570631. PMCID: PMC8718163.
15. Camirand G, Riella LV. 2017; Treg-centric view of immunosuppressive drugs in transplantation: a balancing act. Am J Transplant. 17:601–10. DOI: 10.1111/ajt.14029. PMID: 27581661.
16. de Graav GN, Hesselink DA, Dieterich M, Kraaijeveld R, Douben H, de Klein A, et al. 2016; An acute cellular rejection with detrimental outcome occurring under belatacept-based immunosuppressive therapy: an immunological analysis. Transplantation. 100:1111–9. DOI: 10.1097/TP.0000000000001004. PMID: 26599491.
17. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, et al. 1993; B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 366:76–9. DOI: 10.1038/366076a0. PMID: 7694153.
18. Gross JA, St John T, Allison JP. 1990; The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J Immunol. 144:3201–10. DOI: 10.4049/jimmunol.144.8.3201. PMID: 2157764.
19. Lorenzetti R, Janowska I, Smulski CR, Frede N, Henneberger N, Walter L, et al. 2019; Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J Autoimmun. 101:145–52. DOI: 10.1016/j.jaut.2019.04.016. PMID: 31054942.
20. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. 2005; Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 353:1114–23. DOI: 10.1056/NEJMoa050524. PMID: 16162882.
21. Mease PJ, Gottlieb AB, van der Heijde D, FitzGerald O, Johnsen A, Nys M, et al. 2017; Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann Rheum Dis. 76:1550–8. DOI: 10.1136/annrheumdis-2016-210724. PMID: 28473423. PMCID: PMC5561378.
22. Watkins B, Qayed M, McCracken C, Bratrude B, Betz K, Suessmuth Y, et al. 2021; Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD. J Clin Oncol. 39:1865–77. DOI: 10.1200/JCO.20.01086. PMID: 33449816. PMCID: PMC8260909.
23. Khoury SJ, Rochon J, Ding L, Byron M, Ryker K, Tosta P, et al. 2017; ACCLAIM: a randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult Scler. 23:686–95. DOI: 10.1177/1352458516662727. PMID: 27481207. PMCID: PMC5288398.
24. Sandborn WJ, Colombel JF, Sands BE, Rutgeerts P, Targan SR, Panaccione R, et al. 2012; Abatacept for Crohn's disease and ulcerative colitis. Gastroenterology. 143:62–9. DOI: 10.1053/j.gastro.2012.04.010. PMID: 22504093.
25. Budde K, Prashar R, Haller H, Rial MC, Kamar N, Agarwal A, et al. 2021; Conversion from calcineurin inhibitor- to belatacept-based maintenance immunosuppression in renal transplant recipients: a randomized phase 3b trial. J Am Soc Nephrol. 32:3252–64. DOI: 10.1681/ASN.2021050628. PMID: 34706967. PMCID: PMC8638403.
26. Tawhari I, Hallak P, Bin S, Yamani F, Safar-Boueri M, Irshad A, et al. 2022; Early calcineurin-inhibitor to belatacept conversion in steroid-free kidney transplant recipients. Front Immunol. 13:1096881. DOI: 10.3389/fimmu.2022.1096881. PMID: 36601111. PMCID: PMC9806416.
27. Eisen HJ, Kobashigawa J, Starling RC, Pauly DF, Kfoury A, Ross H, et al. 2013; Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transplant. 13:1203–16. DOI: 10.1111/ajt.12181. PMID: 23433101.
28. McDiarmid SV. 1996; Mycophenolate mofetil in liver transplantation. Clin Transplant. 10(1 Pt 2):140–5. DOI: 10.1111/j.1399-0012.1996.tb00662.x. PMID: 8680052.
29. Karolin A, Genitsch V, Sidler D. 2021; Calcineurin inhibitor toxicity in solid organ transplantation. Pharmacology. 106:347–55. DOI: 10.1159/000515933. PMID: 34130291.
30. El Hennawy H, Safar O, Al Faifi AS, El Nazer W, Kamal A, Mahedy A, et al. 2021; Belatacept rescue therapy of CNI-induced nephrotoxicity, meta-analysis. Transplant Rev (Orlando). 35:100653. DOI: 10.1016/j.trre.2021.100653. PMID: 34597943.
31. Kumar J, Reccia I, Virdis F, Podda M, Sharma AK, Halawa A. 2021; Belatacept in renal transplantation in comparison to tacrolimus and molecular understanding of resistance pattern: meta-analysis and systematic review. World J Transplant. 11:70–86. DOI: 10.5500/wjt.v11.i3.70. PMID: 33816147. PMCID: PMC8009058.
32. Chevallier E, Jouve T, Rostaing L, Malvezzi P, Noble J. 2021; Pre-existing diabetes and PTDM in kidney transplant recipients: how to handle immunosuppression. Expert Rev Clin Pharmacol. 14:55–66. DOI: 10.1080/17512433.2021.1851596. PMID: 33196346.
33. Vincenti F, Larsen CP, Alberu J, Bresnahan B, Garcia VD, Kothari J, et al. 2012; Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 12:210–7. DOI: 10.1111/j.1600-6143.2011.03785.x. PMID: 21992533.
34. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. 2016; Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 374:333–43. DOI: 10.1056/NEJMoa1506027. PMID: 26816011.
35. Vincenti F, Blancho G, Durrbach A, Grannas G, Grinyó J, Meier-Kriesche HU, et al. 2017; Ten-year outcomes in a randomized phase II study of kidney transplant recipients administered belatacept 4-weekly or 8-weekly. Am J Transplant. 17:3219–27. DOI: 10.1111/ajt.14452. PMID: 28758341. PMCID: PMC5724691.
36. Mou D, Espinosa J, Lo DJ, Kirk AD. 2014; CD28 negative T cells: is their loss our gain? Am J Transplant. 14:2460–6. DOI: 10.1111/ajt.12937. PMID: 25323029. PMCID: PMC4886707.
37. Krummey SM, Cheeseman JA, Conger JA, Jang PS, Mehta AK, Kirk AD, et al. 2014; High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept. Am J Transplant. 14:607–14. DOI: 10.1111/ajt.12600. PMID: 24730049. PMCID: PMC4124942.
38. Marvin JE, Azar MM, Belfield KD, Do V, Formica R, Cohen EA. 2022; Overall infectious complications related to belatacept conversion in comparison to tacrolimus in kidney transplant recipients. Prog Transplant. 32:351–6. DOI: 10.1177/15269248221122894. PMID: 36039533.
39. Sanders JF, Bemelman FJ, Messchendorp AL, Baan CC, van Baarle D, van Binnendijk R, et al. 2022; The RECOVAC immune-response study: the immunogenicity, tolerability, and safety of COVID-19 vaccination in patients with chronic kidney disease, on dialysis, or living with a kidney transplant. Transplantation. 106:821–34. DOI: 10.1097/TP.0000000000003983. PMID: 34753894. PMCID: PMC8942603.
40. Arias-Murillo YR, Salinas-Nova MA, Caicedo T, Galindo-Borda M, Meneses-Gil X, Montero C, et al. 2023; Low performance of Sinovac vaccine particularly with belatacept therapy in a study with different types of COVID-19 vaccines in transplanted patients. Transplant Proc. 55:500–7. DOI: 10.1016/j.transproceed.2023.02.034. PMID: 36997378. PMCID: PMC9974356.
41. Dikiy S, Rudensky AY. 2023; Principles of regulatory T cell function. Immunity. 56:240–55. DOI: 10.1016/j.immuni.2023.01.004. PMID: 36792571.
42. Bestard O, Cruzado JM, Mestre M, Caldés A, Bas J, Carrera M, et al. 2007; Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. J Immunol. 179:4901–9. DOI: 10.4049/jimmunol.179.7.4901. PMID: 17878390.
43. Hu M, Wang C, Zhang GY, Saito M, Wang YM, Fernandez MA, et al. 2013; Infiltrating Foxp3(+) regulatory T cells from spontaneously tolerant kidney allografts demonstrate donor-specific tolerance. Am J Transplant. 13:2819–30. DOI: 10.1111/ajt.12445. PMID: 24102948.
44. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. 2005; Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 353:2342–51. DOI: 10.1056/NEJMoa051907. PMID: 16319383.
45. Luan D, Dadhania DM, Ding R, Muthukumar T, Lubetzky M, Lee JR, et al. 2021; FOXP3 mRNA profile prognostic of acute T cell-mediated rejection and human kidney allograft survival. Transplantation. 105:1825–39. DOI: 10.1097/TP.0000000000003478. PMID: 33031221. PMCID: PMC8024419.
46. Wang C, Cordoba S, Hu M, Bertolino P, Bowen DG, Sharland AF, et al. 2011; Spontaneous acceptance of mouse kidney allografts is associated with increased Foxp3 expression and differences in the B and T cell compartments. Transpl Immunol. 24:149–56. DOI: 10.1016/j.trim.2010.12.004. PMID: 21199671.
47. Zhang N, Schröppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. 2009; Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 30:458–69. DOI: 10.1016/j.immuni.2008.12.022. PMID: 19303390. PMCID: PMC2737741.
48. Josien R, Douillard P, Guillot C, Müschen M, Anegon I, Chetritt J, et al. 1998; A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J Clin Invest. 102:1920–6. DOI: 10.1172/JCI4221. PMID: 9835616. PMCID: PMC509143.
49. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, et al. 2001; IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 166:3789–96. DOI: 10.4049/jimmunol.166.6.3789. PMID: 11238621.
50. Young JS, Yin D, Vannier AG, Alegre ML, Chong AS. 2018; Equal expansion of endogenous transplant-specific regulatory T cell and recruitment into the allograft during rejection and tolerance. Front Immunol. 9:1385. DOI: 10.3389/fimmu.2018.01385. PMID: 29973932. PMCID: PMC6020780.
51. Antonioli L, Pacher P, Vizi ES, Haskó G. 2013; CD39 and CD73 in immunity and inflammation. Trends Mol Med. 19:355–67. DOI: 10.1016/j.molmed.2013.03.005. PMID: 23601906. PMCID: PMC3674206.
52. Sánchez-Fueyo A, Sandner S, Habicht A, Mariat C, Kenny J, Degauque N, et al. 2006; Specificity of CD4+CD25+ regulatory T cell function in alloimmunity. J Immunol. 176:329–34. DOI: 10.4049/jimmunol.176.1.329. PMID: 16365425. PMCID: PMC2841032.
53. Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, et al. 2013; Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant. 13:3010–20. DOI: 10.1111/ajt.12433. PMID: 24102808. PMCID: PMC4161737.
54. Sansom DM, Walker LS. 2006; The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev. 212:131–48. DOI: 10.1111/j.0105-2896.2006.00419.x. PMID: 16903911.
55. Yang J, Riella LV, Boenisch O, Popoola J, Robles S, Watanabe T, et al. 2009; Paradoxical functions of B7: CD28 costimulation in a MHC class II-mismatched cardiac transplant model. Am J Transplant. 9:2837–44. DOI: 10.1111/j.1600-6143.2009.02839.x. PMID: 19845593. PMCID: PMC2841781.
56. Glatigny S, Höllbacher B, Motley SJ, Tan C, Hundhausen C, Buckner JH, et al. 2019; Abatacept targets t follicular helper and regulatory T cells, disrupting molecular pathways that regulate their proliferation and maintenance. J Immunol. 202:1373–82. DOI: 10.4049/jimmunol.1801425. PMID: 30683697. PMCID: PMC6481683.
57. Soligo M, Camperio C, Caristi S, Scottà C, Del Porto P, Costanzo A, et al. 2011; CD28 costimulation regulates FOXP3 in a RelA/NF-κB-dependent mechanism. Eur J Immunol. 41:503–13. DOI: 10.1002/eji.201040712. PMID: 21268019.
58. Thomson AW, Turnquist HR, Raimondi G. 2009; Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 9:324–37. DOI: 10.1038/nri2546. PMID: 19390566. PMCID: PMC2847476.
59. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. 2007; In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 109:827–35. DOI: 10.1182/blood-2006-05-025460. PMID: 17003369.
60. Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P, et al. 2008; Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med. 14:88–92. DOI: 10.1038/nm1688. PMID: 18066074. PMCID: PMC2443705.
61. Bernaldo-de-Quirós E, Camino M, Martínez-Bonet M, Gil-Jaurena JM, Gil N, Hernández-Flórez D, et al. 2023; First-in-human therapy with Treg produced from thymic tissue (thyTreg) in a heart transplant infant. J Exp Med. 220:e20231045. DOI: 10.1084/jem.20231045. PMID: 37906166. PMCID: PMC10619578.
62. Lee K, Nguyen V, Lee KM, Kang SM, Tang Q. 2014; Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant. 14:27–38. DOI: 10.1111/ajt.12509. PMID: 24354870. PMCID: PMC5262439.
63. Mathew JM, Voss JH, McEwen ST, Konieczna I, Chakraborty A, Huang X, et al. 2018; Generation and characterization of alloantigen-specific regulatory T cells for clinical transplant tolerance. Sci Rep. 8:1136. DOI: 10.1038/s41598-018-19621-6. PMID: 29348660. PMCID: PMC5773708.
64. Sawitzki B, Harden PN, Reinke P, Moreau A, Hutchinson JA, Game DS, et al. 2020; Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet. 395:1627–39. DOI: 10.1016/S0140-6736(20)30167-7. PMID: 32446407.
65. Lamarche C, Maltzman JS. 2021; The ONE Study: one small step for patient care, a giant leap for cell therapy. Am J Kidney Dis. 77:297–9. DOI: 10.1053/j.ajkd.2020.07.006. PMID: 32763258.
66. Brook MO, Hester J, Petchey W, Rombach I, Dutton S, Bottomley MJ, et al. 2022; Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open. 12:e061864. DOI: 10.1136/bmjopen-2022-061864. PMID: 35428650. PMCID: PMC9014059.
67. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. 2015; Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 7:315ra189. DOI: 10.1126/scitranslmed.aad4134. PMCID: PMC4729454.
68. Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF, Cooper D, et al. 2017; Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 17:931–43. DOI: 10.1111/ajt.14185. PMID: 28027623.
69. Wagner JC, Ronin E, Ho P, Peng Y, Tang Q. 2022; Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am J Transplant. 22:2237–45. DOI: 10.1111/ajt.17063. PMID: 35434896. PMCID: PMC9427704.
70. Graßhoff H, Comdühr S, Monne LR, Müller A, Lamprecht P, Riemekasten G, et al. 2021; Low-dose IL-2 therapy in autoimmune and rheumatic diseases. Front Immunol. 12:648408. DOI: 10.3389/fimmu.2021.648408. PMID: 33868284. PMCID: PMC8047324.
71. Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, et al. 2024; A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest. 134:e173107. DOI: 10.1172/JCI173107. PMID: 38426492. PMCID: PMC10904054.
72. Lu L, Qian XF, Rao JH, Wang XH, Zheng SG, Zhang F. 2010; Rapamycin promotes the expansion of CD4(+) Foxp3(+) regulatory T cells after liver transplantation. Transplant Proc. 42:1755–7. DOI: 10.1016/j.transproceed.2009.10.008. PMID: 20620516.
73. Fisher JD, Balmert SC, Zhang W, Schweizer R, Schnider JT, Komatsu C, et al. 2019; Treg-inducing microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation. Proc Natl Acad Sci U S A. 116:25784–9. DOI: 10.1073/pnas.1910701116. PMID: 31792185. PMCID: PMC6925993.
74. Hu M, Hawthorne WJ, Nicholson L, Burns H, Qian YW, Liuwantara D, et al. 2020; Low-dose interleukin-2 combined with rapamycin led to an expansion of CD4+CD25+-FOXP3+ regulatory T cells and prolonged human islet allograft survival in humanized mice. Diabetes. 69:1735–48. DOI: 10.2337/db19-0525. PMID: 32381646.
75. Murakami N, Borges TJ, Win TS, Abarzua P, Tasigiorgos S, Kollar B, et al. 2023; Low-dose interleukin-2 promotes immune regulation in face transplantation: a pilot study. Am J Transplant. 23:549–58. DOI: 10.1016/j.ajt.2023.01.016. PMID: 36740193. PMCID: PMC10318113.
76. Kim GR, Choi JM. 2022; Current understanding of cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling in T-cell biology and disease therapy. Mol Cells. 45:513–21. DOI: 10.14348/molcells.2022.2056. PMID: 35950451. PMCID: PMC9385567.
77. Lim S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, et al. 2015; dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun. 6:8244. DOI: 10.1038/ncomms9244. PMID: 26372309. PMCID: PMC4579786.
78. Lim S, Lee JA, Koo JH, Kang TG, Ha SJ, Choi JM. 2016; Cell type preference of a novel human derived cell-permeable peptide dNP2 and TAT in murine splenic immune cells. PLoS One. 11:e0155689. DOI: 10.1371/journal.pone.0155689. PMID: 27186978. PMCID: PMC4871486.
79. Choi JM, Ahn MH, Chae WJ, Jung YG, Park JC, Song HM, et al. 2006; Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med. 12:574–9. DOI: 10.1038/nm1385. PMID: 16604087.
80. Lim S, Kirkiles-Smith NC, Pober JS, Bothwell AL, Choi JM. 2018; Regulation of human T cell responses by dNP2-ctCTLA-4 inhibits human skin and microvessel graft rejection. Biomaterials. 183:128–38. DOI: 10.1016/j.biomaterials.2018.08.049. PMID: 30165256. PMCID: PMC6141312.
81. Kim GR, Kim WJ, Lim S, Lee HG, Koo JH, Nam KH, et al. 2021; In vivo induction of regulatory T cells via CTLA-4 signaling peptide to control autoimmune encephalomyelitis and prevent disease relapse. Adv Sci (Weinh). 8:2004973. DOI: 10.1002/advs.202004973. PMID: 34306974. PMCID: PMC8292875.
82. Lee WS, Nam KH, Kim JH, Kim WJ, Kim JE, Shin EC, et al. 2023; Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front Immunol. 14:1233514. DOI: 10.3389/fimmu.2023.1233514. PMID: 37818377. PMCID: PMC10560854.
83. Tsang JY, Tanriver Y, Jiang S, Xue SA, Ratnasothy K, Chen D, et al. 2008; Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J Clin Invest. 118:3619–28. DOI: 10.1172/JCI33185. PMID: 18846251. PMCID: PMC2564608.
84. Schwarz C, Mahr B, Muckenhuber M, Weijler AM, Unger LW, Pilat N, et al. 2021; In vivo Treg expansion under costimulation blockade targets early rejection and improves long-term outcome. Am J Transplant. 21:3765–74. DOI: 10.1111/ajt.16724. PMID: 34152692. PMCID: PMC9292010.
85. Kirk AD, Guasch A, Xu H, Cheeseman J, Mead SI, Ghali A, et al. 2014; Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant. 14:1142–51. DOI: 10.1111/ajt.12712. PMID: 24684552. PMCID: PMC4642731.
86. Fueyo-González F, McGinty M, Ningoo M, Anderson L, Cantarelli C, Andrea Angeletti, et al. 2022; Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity. 55:459–74. DOI: 10.1016/j.immuni.2022.01.011. PMID: 35148827. PMCID: PMC8917088.
87. Iglesias M, Khalifian S, Oh BC, Zhang Y, Miller D, Beck S, et al. 2021; A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. Am J Transplant. 21:2675–87. DOI: 10.1111/ajt.16456. PMID: 33331121.
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr