1. Cozzi E, Colpo A, De Silvestro G. 2017; The mechanisms of rejection in solid organ transplantation. Transfus Apher Sci. 56:498–505. DOI:
10.1016/j.transci.2017.07.005. PMID:
28916402.
2. Rana A, Gruessner A, Agopian VG, Khalpey Z, Riaz IB, Kaplan B, et al. 2015; Survival benefit of solid-organ transplant in the United States. JAMA Surg. 150:252–9. DOI:
10.1001/jamasurg.2014.2038. PMID:
25629390.
9. Agorogiannis EI, Regateiro FS, Howie D, Waldmann H, Cobbold SP. 2012; Th17 cells induce a distinct graft rejection response that does not require IL-17A. Am J Transplant. 12:835–45. DOI:
10.1111/j.1600-6143.2011.03971.x. PMID:
22390151.
11. Torres-Ruiz J, Villca-Gonzales R, Gómez-Martín D, Zentella-Dehesa A, Tapia-Rodríguez M, Uribe-Uribe NO, et al. 2020; A potential role of neutrophil extracellular traps (NETs) in kidney acute antibody mediated rejection. Transpl Immunol. 60:101286. DOI:
10.1016/j.trim.2020.101286. PMID:
32156665.
12. Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, et al. 2020; Vascular signaling in allogenic solid organ transplantation: the role of endothelial cells. Front Physiol. 11:443. DOI:
10.3389/fphys.2020.00443. PMID:
32457653. PMCID:
PMC7227440.
13. Hurskainen M, Ainasoja O, Lemström KB. 2021; Failing heart transplants and rejection: a cellular perspective. J Cardiovasc Dev Dis. 8:180. DOI:
10.3390/jcdd8120180. PMID:
34940535. PMCID:
PMC8708043.
14. Nakagiri T, Inoue M, Minami M, Shintani Y, Okumura M. 2012; Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation. Transplant Proc. 44:1035–40. DOI:
10.1016/j.transproceed.2011.12.032. PMID:
22564619.
15. Antonysamy MA, Fanslow WC, Fu F, Li W, Qian S, Troutt AB, et al. 1999; Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol. 162:577–84. DOI:
10.4049/jimmunol.162.1.577. PMID:
9886435.
16. Tan JK, O'Neill HC. 2005; Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity. J Leukoc Biol. 78:319–24. DOI:
10.1189/jlb.1104664. PMID:
15809288.
17. Harper SJ, Ali JM, Wlodek E, Negus MC, Harper IG, Chhabra M, et al. 2015; CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Natl Acad Sci U S A. 112:12788–93. DOI:
10.1073/pnas.1513533112. PMID:
26420874. PMCID:
PMC4611606.
18. Issa FG, Goto R, Wood KJ. Klein AA, Lewis CJ, Madsen JC, editors. Immunological principles of acute rejection. Organ transplantation: a clinical guide. Cambridge University Press;2011. p. 9–18. DOI:
10.1017/CBO9780511994876.005.
19. Liu Z, Fan H, Jiang S. 2013; CD4(+) T-cell subsets in transplantation. Immunol Rev. 252:183–91. DOI:
10.1111/imr.12038. PMID:
23405905.
21. Kim KW, Kim BM, Doh KC, Cho ML, Yang CW, Chung BH. 2018; Clinical significance of CCR7
+CD8
+ T cells in kidney transplant recipients with allograft rejection. Sci Rep. 8:8827. DOI:
10.1038/s41598-018-27141-6. PMID:
29891963. PMCID:
PMC5995850.
23. Wang Y, Hang G, Wen Q, Wang H, Bao L, Chen B. 2022; Changes and significance of IL-17 in acute renal allograft rejection in rats. Transplant Proc. 54:2021–4. DOI:
10.1016/j.transproceed.2022.05.019. PMID:
35933232.
24. Chung BH, Kim KW, Kim BM, Doh KC, Cho ML, Yang CW. 2015; Increase of Th17 cell phenotype in kidney transplant recipients with chronic allograft dysfunction. PLoS One. 10:e0145258. DOI:
10.1371/journal.pone.0145258. PMID:
26717145. PMCID:
PMC4696852.
25. Crispim JC, Grespan R, Martelli-Palomino G, Rassi DM, Costa RS, Saber LT, et al. 2009; Interleukin-17 and kidney allograft outcome. Transplant Proc. 41:1562–4. DOI:
10.1016/j.transproceed.2009.01.092. PMID:
19545679.
26. Haouami Y, Dhaouadi T, Sfar I, Bacha M, Gargah T, Bardi R, et al. 2018; The role of IL-23/IL-17 axis in human kidney allograft rejection. J Leukoc Biol. 104:1229–39. DOI:
10.1002/JLB.5AB0318-148R. PMID:
30024651.
27. Bunte K, Beikler T. 2019; Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 20:3394. DOI:
10.3390/ijms20143394. PMID:
31295952. PMCID:
PMC6679067.
28. Xie XJ, Ye YF, Zhou L, Xie HY, Jiang GP, Feng XW, et al. 2010; Th17 promotes acute rejection following liver transplantation in rats. J Zhejiang Univ Sci B. 11:819–27. DOI:
10.1631/jzus.B1000030. PMID:
21043049. PMCID:
PMC2970890.
29. Assadiasl S, Toosi MN, Mohebbi B, Ansaripour B, Soleimanifar N, Sadr M, et al. 2022; Th17/Treg cell balance in stable liver transplant recipients. Transpl Immunol. 71:101540. DOI:
10.1016/j.trim.2022.101540. PMID:
35065203.
30. Fan H, Li LX, Han DD, Kou JT, Li P, He Q. 2012; Increase of peripheral Th17 lymphocytes during acute cellular rejection in liver transplant recipients. Hepatobiliary Pancreat Dis Int. 11:606–11. DOI:
10.1016/S1499-3872(12)60231-8. PMID:
23232631.
31. Afshari A, Yaghobi R, Karimi MH, Darbooie M, Azarpira N. 2014; Interleukin-17 gene expression and serum levels in acute rejected and non-rejected liver transplant patients. Iran J Immunol. 11:29–39.
32. Fábrega E, López-Hoyos M, San Segundo D, Casafont F, Pons-Romero F. 2009; Changes in the serum levels of interleukin-17/interleukin-23 during acute rejection in liver transplantation. Liver Transpl. 15:629–33. DOI:
10.1002/lt.21724. PMID:
19479806.
33. Min SI, Ha J, Park CG, Won JK, Park YJ, Min SK, et al. 2009; Sequential evolution of IL-17 responses in the early period of allograft rejection. Exp Mol Med. 41:707–16. DOI:
10.3858/emm.2009.41.10.077. PMID:
19561402. PMCID:
PMC2772973.
34. Wang S, Li J, Xie A, Wang G, Xia N, Ye P, et al. 2011; Dynamic changes in Th1, Th17, and FoxP3+ T cells in patients with acute cellular rejection after cardiac transplantation. Clin Transplant. 25:E177–86. DOI:
10.1111/j.1399-0012.2010.01362.x.
35. Chen H, Wang W, Xie H, Xu X, Wu J, Jiang Z, et al. 2009; A pathogenic role of IL-17 at the early stage of corneal allograft rejection. Transpl Immunol. 21:155–61. DOI:
10.1016/j.trim.2009.03.006. PMID:
19358887.
36. Yang JJ, Feng F, Hong L, Sun L, Li MB, Zhuang R, et al. 2013; Interleukin-17 plays a critical role in the acute rejection of intestinal transplantation. World J Gastroenterol. 19:682–91. DOI:
10.3748/wjg.v19.i5.682. PMID:
23429965. PMCID:
PMC3574594.
37. Zheng HL, Shi BY, Du GS, Wang Z. 2014; Changes in Th17 and IL-17 levels during acute rejection after mouse skin transplantation. Eur Rev Med Pharmacol Sci. 18:2720–86.
38. Chen QR, Wang LF, Xia SS, Zhang YM, Xu JN, Li H, et al. 2016; Role of interleukin-17A in early graft rejection after orthotopic lung transplantation in mice. J Thorac Dis. 8:1069–79. DOI:
10.21037/jtd.2015.12.08. PMID:
27293822. PMCID:
PMC4886000.
39. Vanaudenaerde BM, Dupont LJ, Wuyts WA, Verbeken EK, Meyts I, Bullens DM, et al. 2006; The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J. 27:779–87. DOI:
10.1183/09031936.06.00019405. PMID:
16585086.
40. Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. 2024; Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. Front Transplant. 3:1336563. DOI:
10.3389/frtra.2024.1336563. PMID:
38993777. PMCID:
PMC11235243.
41. Itoh S, Nakae S, Axtell RC, Velotta JB, Kimura N, Kajiwara N, et al. 2010; IL-17 contributes to the development of chronic rejection in a murine heart transplant model. J Clin Immunol. 30:235–40. DOI:
10.1007/s10875-009-9366-9. PMID:
20130970.
42. Watanabe T, Juvet SC, Berra G, Havlin J, Zhong W, Boonstra K, et al. 2023; Donor IL-17 receptor A regulates LPS-potentiated acute and chronic murine lung allograft rejection. JCI Insight. 8:e158002. DOI:
10.1172/jci.insight.158002. PMID:
37937643. PMCID:
PMC10721268.
43. Zhang M, Xu M, Wang K, Li L, Zhao J. 2021; Effect of inhibition of the JAK2/STAT3 signaling pathway on the Th17/IL-17 axis in acute cellular rejection after heart transplantation in mice. J Cardiovasc Pharmacol. 77:614–20. DOI:
10.1097/FJC.0000000000001007. PMID:
33951698. PMCID:
PMC8096315.
44. Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D'Addio F, Mfarrej B, Donnarumma M, et al. 2008; A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med. 205:3133–44. DOI:
10.1084/jem.20081937. PMID:
19047438. PMCID:
PMC2605226.
45. Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, et al. 2006; T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med. 203:2009–19. DOI:
10.1084/jem.20052222. PMID:
16880257. PMCID:
PMC2118365.
47. Duan L, Chen J, Xia Q, Chen L, Fan K, Sigdel KR, et al. 2014; IL-17 promotes Type 1 T cell response through modulating dendritic cell function in acute allograft rejection. Int Immunopharmacol. 20:290–7. DOI:
10.1016/j.intimp.2014.03.010. PMID:
24680942.
48. Frangou E, Vassilopoulos D, Boletis J, Boumpas DT. 2019; An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun Rev. 18:751–60. DOI:
10.1016/j.autrev.2019.06.011. PMID:
31181324.
49. Gökmen MR, Lombardi G, Lechler RI. 2008; The importance of the indirect pathway of allorecognition in clinical transplantation. Curr Opin Immunol. 20:568–74. DOI:
10.1016/j.coi.2008.06.009. PMID:
18655831.
50. Chen Y, Chen J, Liu Z, Liang S, Luan X, Long F, et al. 2008; Relationship between TH1/TH2 cytokines and immune tolerance in liver transplantation in rats. Transplant Proc. 40:2691–5. DOI:
10.1016/j.transproceed.2008.08.014. PMID:
18929837.
51. Sadeghi M, Daniel V, Weimer R, Wiesel M, Hergesell O, Opelz G. 2003; Pre-transplant Th1 and post-transplant Th2 cytokine patterns are associated with early acute rejection in renal transplant recipients. Clin Transplant. 17:151–7. DOI:
10.1034/j.1399-0012.2003.00037.x. PMID:
12709083.
53. D'Elios MM, Josien R, Manghetti M, Amedei A, de Carli M, Cuturi MC, et al. 1997; Predominant Th1 cell infiltration in acute rejection episodes of human kidney grafts. Kidney Int. 51:1876–84. DOI:
10.1038/ki.1997.256. PMID:
9186878.
54. Deteix C, Attuil-Audenis V, Duthey A, Patey N, McGregor B, Dubois V, et al. 2010; Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol. 184:5344–51. DOI:
10.4049/jimmunol.0902999. PMID:
20357253.
55. Wang K, Song ZL, Wu B, Zhou CL, Liu W, Gao W. 2019; The T-helper cells 17 instead of Tregs play the key role in acute rejection after pediatric liver transplantation. Pediatr Transplant. 23:e13363. DOI:
10.1111/petr.13363. PMID:
30756444.
56. Loverre A, Divella C, Castellano G, Tataranni T, Zaza G, Rossini M, et al. 2011; T helper 1, 2 and 17 cell subsets in renal transplant patients with delayed graft function. Transpl Int. 24:233–42. DOI:
10.1111/j.1432-2277.2010.01157.x. PMID:
21281362.
57. Illigens BM, Yamada A, Anosova N, Dong VM, Sayegh MH, Benichou G. 2009; Dual effects of the alloresponse by Th1 and Th2 cells on acute and chronic rejection of allotransplants. Eur J Immunol. 39:3000–9. DOI:
10.1002/eji.200838980. PMID:
19658090. PMCID:
PMC2911804.
58. Kubota N, Sugitani M, Takano S, Sheikh A, Takayama T, Haga H, et al. 2006; Correlation between acute rejection severity and CD8-positive T cells in living related liver transplantation. Transpl Immunol. 16:60–4. DOI:
10.1016/j.trim.2006.03.002. PMID:
16701178.
59. Posselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R. 2003; CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation. 76:190–5. DOI:
10.1097/01.TP.0000073614.29680.A8. PMID:
12865808.
60. Ekkens MJ, Shedlock DJ, Jung E, Troy A, Pearce EL, Shen H, et al. 2007; Th1 and Th2 cells help CD8 T-cell responses. Infect Immun. 75:2291–6. DOI:
10.1128/IAI.01328-06. PMID:
17325050. PMCID:
PMC1865742.
61. Taylor AL, Negus SL, Negus M, Bolton EM, Bradley JA, Pettigrew GJ. 2007; Pathways of helper CD4 T cell allorecognition in generating alloantibody and CD8 T cell alloimmunity. Transplantation. 83:931–7. DOI:
10.1097/01.tp.0000257960.07783.e3. PMID:
17460565.
62. Vella JP, Spadafora-Ferreira M, Murphy B, Alexander SI, Harmon W, Carpenter CB, et al. 1997; Indirect allorecognition of major histocompatibility complex allopeptides in human renal transplant recipients with chronic graft dysfunction. Transplantation. 64:795–800. DOI:
10.1097/00007890-199709270-00001. PMID:
9326400.
63. Jones ND, Van Maurik A, Hara M, Gilot BJ, Morris PJ, Wood KJ. 1999; T-cell activation, proliferation, and memory after cardiac transplantation in vivo. Ann Surg. 229:570–8. DOI:
10.1097/00000658-199904000-00018. PMID:
10203092. PMCID:
PMC1191745.
64. Lu J, Li P, Du X, Liu Y, Zhang B, Qi F. 2021; Regulatory T cells induce transplant immune tolerance. Transpl Immunol. 67:101411. DOI:
10.1016/j.trim.2021.101411. PMID:
34020045.
65. Stenard F, Nguyen C, Cox K, Kambham N, Umetsu DT, Krams SM, et al. 2009; Decreases in circulating CD4+CD25hiFOXP3+ cells and increases in intragraft FOXP3+ cells accompany allograft rejection in pediatric liver allograft recipients. Pediatr Transplant. 13:70–80. DOI:
10.1111/j.1399-3046.2008.00917.x. PMID:
18331536.
66. Demirkiran A, Kok A, Kwekkeboom J, Kusters JG, Metselaar HJ, Tilanus HW, et al. 2006; Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl. 12:277–84. DOI:
10.1002/lt.20612. PMID:
16447185.
67. Brouard S, Mansfield E, Braud C, Li L, Giral M, Hsieh SC, et al. 2007; Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci U S A. 104:15448–53. DOI:
10.1073/pnas.0705834104. PMID:
17873064. PMCID:
PMC2000539.
68. Braza F, Dugast E, Panov I, Paul C, Vogt K, Pallier A, et al. 2015; Central role of CD45RA- Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance. J Am Soc Nephrol. 26:1795–805. DOI:
10.1681/ASN.2014050480. PMID:
25556168. PMCID:
PMC4520169.
69. Chung BH, Oh HJ, Piao SG, Sun IO, Kang SH, Choi SR, et al. 2011; Higher infiltration by Th17 cells compared with regulatory T cells is associated with severe acute T-cell-mediated graft rejection. Exp Mol Med. 43:630–7. DOI:
10.3858/emm.2011.43.11.071. PMID:
21865860. PMCID:
PMC3249589.
70. Zhou W, Zhou X, Gaowa S, Meng Q, Zhan Z, Liu J, et al. 2015; The critical role of induced CD4+ FoxP3+ regulatory cells in suppression of Interleukin-17 production and attenuation of mouse orthotopic lung allograft rejection. Transplantation. 99:1356–64. DOI:
10.1097/TP.0000000000000526. PMID:
25856405.
71. Li J, Lai X, Liao W, He Y, Liu Y, Gong J. 2011; The dynamic changes of Th17/Treg cytokines in rat liver transplant rejection and tolerance. Int Immunopharmacol. 11:962–7. DOI:
10.1016/j.intimp.2011.02.010. PMID:
21376155.
72. Parlakpinar H, Gunata M. 2021; Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol. 43:651–65. DOI:
10.1080/08923973.2021.1966033. PMID:
34415233.
74. Chi H. 2012; Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 12:325–38. DOI:
10.1038/nri3198. PMID:
22517423. PMCID:
PMC3417069.
75. Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. 2022; Cytokine receptors-regulators of antimycobacterial immune response. Int J Mol Sci. 23:1112. DOI:
10.3390/ijms23031112. PMID:
35163035. PMCID:
PMC8835057.
78. ten Berge IJ, Parlevliet KJ, Raasveld MH, Buysmann S, Bemelman FJ, Schellekens PT. 1999; Guidelines for the optimal use of muromonab CD3 in transplantation. BioDrugs. 11:277–84. DOI:
10.2165/00063030-199911040-00006. PMID:
18031137.
79. Schwarz C, Mahr B, Muckenhuber M, Wekerle T. 2018; Belatacept/CTLA4Ig: an update and critical appraisal of preclinical and clinical results. Expert Rev Clin Immunol. 14:583–92. DOI:
10.1080/1744666X.2018.1485489. PMID:
29874474.
80. Vanhove B, Soulillou JP. 2005; Technology evaluation: Belatacept, Bristol-Myers Squibb. Curr Opin Mol Ther. 7:384–93.
81. Lin M, Ming A, Zhao M. 2006; Two-dose basiliximab compared with two-dose daclizumab in renal transplantation: a clinical study. Clin Transplant. 20:325–9. DOI:
10.1111/j.1399-0012.2005.00488.x. PMID:
16824149.
82. Fukahori H, Chida N, Maeda M, Tasaki M, Kawashima T, Noto T, et al. 2015; Effect of novel PKCθ selective inhibitor AS2521780 on acute rejection in rat and non-human primate models of transplantation. Int Immunopharmacol. 27:232–7. DOI:
10.1016/j.intimp.2015.06.016. PMID:
26122135.
84. Mimouni D, Nousari HC. 2003; Inhibitors of purine and pyrimidine synthesis: mycophenolate, azathioprine, and leflunomide. Dermatol ther. 15:311–6. DOI:
10.1046/j.1529-8019.2002.01539.x.
85. Hoppe-Seyler K, Sauer P, Lohrey C, Hoppe-Seyler F. 2012; The inhibitors of nucleotide biosynthesis leflunomide, FK778, and mycophenolic acid activate hepatitis B virus replication in vitro. Hepatology. 56:9–16. DOI:
10.1002/hep.25602. PMID:
22271223.
86. Brinkmann V. 2004; FTY720: mechanism of action and potential benefit in organ transplantation. Yonsei Med J. 45:991–7. DOI:
10.3349/ymj.2004.45.6.991. PMID:
15627289.
87. Aki FT, Kahan BD. 2003; FTY720: a new kid on the block for transplant immunosuppression. Expert Opin Biol Ther. 3:665–81. DOI:
10.1517/14712598.3.4.665. PMID:
12831371.
89. Truckenmiller ME, Princiotta MF, Norbury CC, Bonneau RH. 2005; Corticosterone impairs MHC class I antigen presentation by dendritic cells via reduction of peptide generation. J Neuroimmunol. 160:48–60. DOI:
10.1016/j.jneuroim.2004.10.024. PMID:
15710457.
90. Vu D, Tellez-Corrales E, Sakharkar P, Kissen MS, Shah T, Hutchinson I, et al. 2013; Impact of NF-κB gene polymorphism on allograft outcome in Hispanic renal transplant recipients. Transpl Immunol. 28:18–23. DOI:
10.1016/j.trim.2012.11.001. PMID:
23153769.
91. Csizmadia V, Gao W, Hancock SA, Rottman JB, Wu Z, Turka LA, et al. 2001; Differential NF-kappaB and IkappaB gene expression during development of cardiac allograft rejection versus CD154 monoclonal antibody-induced tolerance. Transplantation. 71:835–40. DOI:
10.1097/00007890-200104150-00003. PMID:
11349713.
92. Abadja F, Atemkeng S, Alamartine E, Berthoux F, Mariat C. 2011; Impact of mycophenolic acid and tacrolimus on Th17-related immune response. Transplantation. 92:396–403. DOI:
10.1097/TP.0b013e3182247b5f. PMID:
21818055.
93. Li Y, Shi Y, Liao Y, Yan L, Zhang Q, Wang L. 2015; Differential regulation of Tregs and Th17/Th1 cells by a sirolimus-based regimen might be dependent on STAT-signaling in renal transplant recipients. Int Immunopharmacol. 28:435–43. DOI:
10.1016/j.intimp.2015.07.006. PMID:
26186486.
94. Doh KC, Kim BM, Kim KW, Chung BH, Yang CW. 2019; Effects of resveratrol on Th17 cell-related immune responses under tacrolimus-based immunosuppression. BMC Complement Altern Med. 19:54. DOI:
10.1186/s12906-019-2464-1. PMID:
30832648. PMCID:
PMC6399827.
98. Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, et al. 2022; Selective decrease of donor-reactive Tregs after liver transplantation limits Treg therapy for promoting allograft tolerance in humans. Sci Transl Med. 14:eabo2628. DOI:
10.1126/scitranslmed.abo2628. PMID:
36322627. PMCID:
PMC11016119.
99. Chandran S, Tang Q, Sarwal M, Laszik ZG, Putnam AL, Lee K, et al. 2017; Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am J Transplant. 17:2945–54. DOI:
10.1111/ajt.14415. PMID:
28675676. PMCID:
PMC5662482.
100. Salminen A, Kaarniranta K, Kauppinen A. 2018; The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev. 48:1–10. DOI:
10.1016/j.arr.2018.09.001. PMID:
30248408.
102. Londoño MC, Rimola A, O'Grady J, Sanchez-Fueyo A. 2013; Immunosuppression minimization vs. complete drug withdrawal in liver transplantation. J Hepatol. 59:872–9. DOI:
10.1016/j.jhep.2013.04.003. PMID:
23578883.