Clin Transplant Res.  2024 Dec;38(4):294-308. 10.4285/ctr.24.0055.

A walk through the development of human leukocyte antigen typing: from serologic techniques to next-generation sequencing

Affiliations
  • 1Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 3Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
  • 4ViGenCell Inc., Seoul, Korea
  • 5Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Human leukocyte antigen (HLA) is a group of glycoproteins encoded by the major his- tocompatibility complex (MHC) that plays a pivotal role in the host's immune defense. Given that the MHC represents the most polymorphic region in the human genome, HLA typing is crucial in organ transplantation. It significantly influences graft rejection, graft-versus-host disease, and the overall patient outcome by mediating the discrimination between self and nonself. HLA typing technology began with serological methods and has evolved rapidly alongside advances in molecular technologies, progressing from DNA-based typing to next- or third-generation sequencing. These advancements have increased the accuracy of HLA typing and reduced ambiguities, leading to marked improvements in transplantation outcomes. Additionally, numerous novel HLA alleles have been identified. In this review, we explore the developmental history and future prospects of HLA typing technology, which promises to further benefit the field of transplantation.

Keyword

Human leukocyte antigen; Histocompatibility testing; Transplantation; Next-generation sequencing

Figure

  • Fig. 1 Timeline of technological advancements in human leukocyte antigen (HLA) typing methods. This timeline shows the introduction of developing HLA typing methods from serological assays from the 1960s to third-generation sequencing technology. PCR, polymerase chain reaction.

  • Fig. 2 Nomenclature of HLA alleles. Each HLA allele name has a unique number of four fields. The first field describes the allele group, which often corresponds to the serological type. The second field is used to describe the specific HLA protein, and third field provide the information of synonymous mutation within the coding sequence. The fourth field describes the mutations in noncoding regions such as 3’UTR, 5’UTR, and intron. Suffixes may be added to an allele to indicate the expression status of the allele. HLA, human leukocyte antigen. Adapted from Luo et al. Nat Genet 2021;53:1504–16 with permission of Springer Nature [12].

  • Fig. 3 Schematic presentation of HLA class I and II gene organization and protein structure. In humans, separate clusters of HLA class I and II genes are located on chromosome 6. Three main class I genes are HLA-A, HLA-B, and HLA-C. HLA class I molecules consist of one α chain and β2microglobulin (β2m). The class II region includes the α and β chains for HLA-DR, -DP, and -DQ molecules. The most polymorphic regions are considered to reside in peptide-binding regions, which are exons 2 and 3 in HLA class I genes and exon 2 in HLA class II genes. HLA, human leukocyte antigen.

  • Fig. 4 The number of new alleles submissions by year to the IPD-IMGT/HLA database from 2000 to 2023. This data includes small number of human leukocyte antigen (HLA)-related genes such as MICA/B. The predominant methods for HLA typing are indicated above the bars.

  • Fig. 5 Ambiguous human leukocyte antigen typing results. (A) This type of ambiguity arises when the typing method cannot differentiate between the polymorphisms located on the same chromosome (cis) and that located on different chromosomes (trans). (B) Furthermore, ambiguity arises when two or more alleles differ only in the regions that are not sequenced such as introns, 3’UTR, and 5’UTR.

  • Fig. 6 The schematic workflow of a PacBio SMRT sequencing and Oxford Nanopore Technologies. (A) PacBio SMRT sequencing. Hairpin adaptors are ligated to both ends of the template DNA to form a single-stranded circular DNA. The addition of complementary fluorescently labeled dNTP during sequencing is recorded. (B) Oxford Nanopore sequencing. The DNA template binds to adaptors with motor protein. Sequencing is initiated by entering a nanopore attached to the motor protein. As the template DNA strand passes through the nanopore, specific change in the ionic current for each nucleotide across the membrane is detected. This specific current is further translated into nucleotide sequence. SMRT, Single-Molecule Sequencing in Real Time.


Reference

1. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CGL. 2018; Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics. 12:43. DOI: 10.1186/s40246-018-0175-1. PMID: 30219098. PMCID: PMC6139121.
2. Geo JA, Ameen R, Al Shemmari S, Thomas J. 2024; Advancements in HLA typing techniques and their impact on transplantation medicine. Med Princ Pract. 33:215–31. DOI: 10.1159/000538176. PMID: 38442703. PMCID: PMC11175610.
3. Huang Y, Dinh A, Heron S, Gasiewski A, Kneib C, Mehler H, et al. 2019; Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation. Am J Transplant. 19:1955–63. DOI: 10.1111/ajt.15258. PMID: 30623581.
4. Senev A, Emonds MP, Van Sandt V, Lerut E, Coemans M, Sprangers B, et al. 2020; Clinical importance of extended second field high-resolution HLA genotyping for kidney transplantation. Am J Transplant. 20:3367–78. DOI: 10.1111/ajt.15938. PMID: 32337773. PMCID: PMC7754319.
5. Lechler R, Warrens A. HLA in health and disease. 2nd ed. Academic Press;2000.
6. Van Rood JJ, Eernisse JG, Van Leeuwen A. 1958; Leucocyte antibodies in sera from pregnant women. Nature. 181:1735–6. DOI: 10.1038/1811735a0. PMID: 13566127.
7. Terasaki PI, McClelland JD. 1964; Microdroplet assay of human serum cytotoxins. Nature. 204:998–1000. DOI: 10.1038/204998b0. PMID: 14248725.
8. Reynolds WM, Evans PR, Lane AC, Howell WM, Wilson PJ, Wong R, et al. 1994; Automated HLA-B27 testing using the FACSPrep/FACScan system. Cytometry. 18:109–15. DOI: 10.1002/cyto.990180210. PMID: 7924699.
9. Yang SY, Morishima Y, Collins NH, Alton T, Pollack MS, Yunis EJ, et al. 1984; Comparison of one-dimensional IEF patterns for serologically detectable HLA-A and B allotypes. Immunogenetics. 19:217–31. DOI: 10.1007/BF00364765. PMID: 6200434.
10. Bach F, Hirschhorn K. 1964; Lymphocyte interaction: a potential histocompatibility test in vitro. Science. 143:813–4. DOI: 10.1126/science.143.3608.813. PMID: 14088078.
11. Eijsvoogel VP, van Rood JJ, Du Toit ED, Schellekens PT. 1972; Position of a locus determining mixed lymphocyte reaction distinct from the known HL-A loci. Eur J Immunol. 2:413–8. DOI: 10.1002/eji.1830020506. PMID: 4263770.
12. Luo Y, Kanai M, Choi W, Li X, Sakaue S, Yamamoto K, et al. 2021; A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat Genet. 53:1504–16. DOI: 10.1038/s41588-021-00935-7. PMID: 34611364. PMCID: PMC8959399.
13. Eng HS, Leffell MS. 2011; Histocompatibility testing after fifty years of transplantation. J Immunol Methods. 369:1–21. DOI: 10.1016/j.jim.2011.04.005. PMID: 21530531.
14. Lorentzen DF, Iwanaga KK, Meuer KJ, Moritz TL, Watkins DI. 1997; A 25% error rate in serologic typing of HLA-B homozygotes. Tissue Antigens. 50:359–65. DOI: 10.1111/j.1399-0039.1997.tb02888.x. PMID: 9349620.
15. Hurley CK, Fernandez-Vina M, Hildebrand WH, Noreen HJ, Trachtenberg E, Williams TM, et al. 2007; A high degree of HLA disparity arises from limited allelic diversity: analysis of 1775 unrelated bone marrow transplant donor-recipient pairs. Hum Immunol. 68:30–40. DOI: 10.1016/j.humimm.2006.09.004. PMID: 17207710.
16. Mickelson EM, Bartsch GE, Hansen JA, Dupont B. 1993; The MLC assay as a test for HLA-D region compatibility between patients and unrelated donors: results of a national marrow donor program involving multiple centers. Tissue Antigens. 42:465–72. DOI: 10.1111/j.1399-0039.1993.tb02190.x. PMID: 8146857.
17. Bidwell J. 1994; Advances in DNA-based HLA-typing methods. Immunol Today. 15:303–7. DOI: 10.1016/0167-5699(94)90076-0. PMID: 8086098.
18. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. 1986; Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 324:163–6. DOI: 10.1038/324163a0. PMID: 3785382.
19. Saiki RK, Walsh PS, Levenson CH, Erlich HA. 1989; Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 86:6230–4. DOI: 10.1073/pnas.86.16.6230. PMID: 2762325. PMCID: PMC297811.
20. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr. 1997; Advanced multiplexed analysis with the FlowMetrix system. Clin Chem. 43:1749–56. DOI: 10.1093/clinchem/43.9.1749. PMID: 9299971.
21. Won DI. 2017; A novel analysis strategy for HLA typing using a sequence-specific oligonucleotide probe method. HLA. 90:276–83. DOI: 10.1111/tan.13114. PMID: 28796439.
22. Olerup O, Zetterquist H. 1992; HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens. 39:225–35. DOI: 10.1111/j.1399-0039.1992.tb01940.x. PMID: 1357775.
23. Wu DY, Ugozzoli L, Pal BK, Wallace RB. 1989; Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 86:2757–60. DOI: 10.1073/pnas.86.8.2757. PMID: 2704745. PMCID: PMC286997.
24. Bunce M, Welsh KI. 1994; Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles. Tissue Antigens. 43:7–17. DOI: 10.1111/j.1399-0039.1994.tb02290.x. PMID: 7912861.
25. Bunce M, Fanning GC, Welsh KI. 1995; Comprehensive, serologically equivalent DNA typing for HLA-B by PCR using sequence-specific primers (PCR-SSP). Tissue Antigens. 45:81–90. DOI: 10.1111/j.1399-0039.1995.tb02422.x. PMID: 7792765.
26. Krausa P, Browning MJ. 1996; A comprehensive PCR-SSP typing system for identification of HLA-A locus alleles. Tissue Antigens. 47:237–44. DOI: 10.1111/j.1399-0039.1996.tb02547.x. PMID: 8740775.
27. Bunce M, O'Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, et al. 1995; Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens. 46:355–67. DOI: 10.1111/j.1399-0039.1995.tb03127.x. PMID: 8838344.
28. McGinnis MD, Conrad MP, Bouwens AG, Tilanus MG, Kronick MN. 1995; Automated, solid-phase sequencing of DRB region genes using T7 sequencing chemistry and dye-labeled primers. Tissue Antigens. 46(3 Pt 1):173–9. DOI: 10.1111/j.1399-0039.1995.tb03116.x. PMID: 8525476.
29. Voorter CE, Rozemuller EH, de Bruyn-Geraets D, van der Zwan AW, Tilanus MG, van den Berg-Loonen EM. 1997; Comparison of DRB sequence-based typing using different strategies. Tissue Antigens. 49:471–6. DOI: 10.1111/j.1399-0039.1997.tb02781.x. PMID: 9174139.
30. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG. 2011; The IMGT/HLA database. Nucleic Acids Res. 39:D1171–6. DOI: 10.1093/nar/gkq998. PMID: 21071412. PMCID: PMC3013815.
31. Versluis LF, Rozemuller E, Tonks S, Marsh SG, Bouwens AG, Bodmer JG, et al. 1993; High-resolution HLA-DPB typing based upon computerized analysis of data obtained by fluorescent sequencing of the amplified polymorphic exon 2. Hum Immunol. 38:277–83. DOI: 10.1016/0198-8859(93)90555-F. PMID: 8138423.
32. Voorter CE, Kik MC, van den Berg-Loonen EM. 1998; High-resolution HLA typing for the DQB1 gene by sequence-based typing. Tissue Antigens. 51:80–7. DOI: 10.1111/j.1399-0039.1998.tb02950.x. PMID: 9459507.
33. Scheltinga SA, Johnston-Dow LA, White CB, van der Zwan AW, Bakema JE, Rozemuller EH, et al. 1997; A generic sequencing based typing approach for the identification of HLA-A diversity. Hum Immunol. 57:120–8. DOI: 10.1016/S0198-8859(97)00204-8. PMID: 9438203.
34. van der Vlies SA, Voorter CE, van den Berg-Loonen EM. 1999; There is more to HLA-C than exons 2 and 3: sequencing exons 1, 4 and 5. Tissue Antigens. 54:169–77. DOI: 10.1034/j.1399-0039.1999.540208.x. PMID: 10488744.
35. Swelsen WT, Voorter CE, van den Berg-Loonen EM. 2002; Sequence analysis of exons 1, 2, 3, 4 and 5 of the HLA-B5/35 cross-reacting group. Tissue Antigens. 60:224–34. DOI: 10.1034/j.1399-0039.2002.600304.x. PMID: 12445305.
36. Swelsen WT, Voorter CE, van den Berg-Loonen EM. 2004; Ambiguities of human leukocyte antigen-B resolved by sequence-based typing of exons 1, 4, and 5. Tissue Antigens. 63:248–54. DOI: 10.1111/j.1399-0039.2004.00181.x. PMID: 14989714.
37. Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Charron D, et al. 1997; Nomenclature for factors of the HLA system, 1996. Tissue Antigens. 49(3 Pt 2):297–321. DOI: 10.1111/j.1399-0039.1997.tb02759.x. PMID: 9098945.
38. Prasad VK, Kernan NA, Heller G, O'Reilly RJ, Yang SY. 1999; DNA typing for HLA-A and HLA-B identifies disparities between patients and unrelated donors matched by HLA-A and HLA-B serology and HLA-DRB1. Blood. 93:399–409. DOI: 10.1182/blood.V93.1.399. PMID: 9864187.
39. Bugawan TL, Erlich HA. 1991; Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics. 33:163–70. DOI: 10.1007/BF01719235. PMID: 2010218.
40. Robinson J, Barker DJ, Marsh SG. 2024; 25 years of the IPD-IMGT/HLA database. HLA. 103:e15549. DOI: 10.1111/tan.15549. PMID: 38936817.
41. Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, Slavich L, et al. 2010; Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol. 71:1033–42. DOI: 10.1016/j.humimm.2010.06.016. PMID: 20603174.
42. Adams SD, Barracchini KC, Chen D, Robbins F, Wang L, Larsen P, et al. 2004; Ambiguous allele combinations in HLA class I and class II sequence-based typing: when precise nucleotide sequencing leads to imprecise allele identification. J Transl Med. 2:30. DOI: 10.1186/1479-5876-2-30. PMID: 15363110. PMCID: PMC517951.
43. Shiina T, Suzuki S, Ozaki Y, Taira H, Kikkawa E, Shigenari A, et al. 2012; Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens. 80:305–16. DOI: 10.1111/j.1399-0039.2012.01941.x. PMID: 22861646.
44. Voorter CE, Palusci F, Tilanus MG. 2014; Sequence-based typing of HLA: an improved group-specific full-length gene sequencing approach. Methods Mol Biol. 1109:101–14. DOI: 10.1007/978-1-4614-9437-9_7. PMID: 24473781.
45. Vayntrub TA, Mack SJ, Fernandez-Viña MA. 2020; Preface: 17th International HLA and Immunogenetics Workshop. Hum Immunol. 81:52–8. DOI: 10.1016/j.humimm.2020.01.008. PMID: 32051104.
46. Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, et al. 2012; High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A. 109:8676–81. DOI: 10.1073/pnas.1206614109. PMID: 22589303. PMCID: PMC3365218.
47. Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, et al. 2009; High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens. 74:393–403. DOI: 10.1111/j.1399-0039.2009.01345.x. PMID: 19845894. PMCID: PMC4205125.
48. Gabriel C, Danzer M, Hackl C, Kopal G, Hufnagl P, Hofer K, et al. 2009; Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol. 70:960–4. DOI: 10.1016/j.humimm.2009.08.009. PMID: 19706315.
49. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, et al. 2012; Derivation of HLA types from shotgun sequence datasets. Genome Med. 4:95. DOI: 10.1186/gm396. PMID: 23228053. PMCID: PMC3580435.
50. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. 2014; OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 30:3310–6. DOI: 10.1093/bioinformatics/btu548. PMID: 25143287. PMCID: PMC4441069.
51. Carapito R, Radosavljevic M, Bahram S. 2016; Next-generation sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies. Hum Immunol. 77:1016–23. DOI: 10.1016/j.humimm.2016.04.002. PMID: 27060029.
52. Bravo-Egana V, Sanders H, Chitnis N. 2021; New challenges, new opportunities: next generation sequencing and its place in the advancement of HLA typing. Hum Immunol. 82:478–87. DOI: 10.1016/j.humimm.2021.01.010. PMID: 33551127.
53. Cereb N, Kim HR, Ryu J, Yang SY. 2015; Advances in DNA sequencing technologies for high resolution HLA typing. Hum Immunol. 76:923–7. DOI: 10.1016/j.humimm.2015.09.015. PMID: 26423536.
54. Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, et al. 2016; Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA. 87:141–52. DOI: 10.1111/tan.12736. PMID: 26880737.
55. Danzer M, Niklas N, Stabentheiner S, Hofer K, Pröll J, Stückler C, et al. 2013; Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics. 14:221. DOI: 10.1186/1471-2164-14-221. PMID: 23557197. PMCID: PMC3639865.
56. Baek IC, Choi EJ, Shin DH, Kim HJ, Choi H, Kim TG. 2021; Distributions of HLA-A, -B, and -DRB1 alleles typed by amplicon-based next generation sequencing in Korean volunteer donors for unrelated hematopoietic stem cell transplantation. HLA. 97:112–26. DOI: 10.1111/tan.14134. PMID: 33179442.
57. Baek IC, Choi EJ, Kim HJ, Choi H, Kim TG. 2023; Distributions of 11-loci HLA alleles typed by amplicon-based next-generation sequencing in South Koreans. HLA. 101:613–22. DOI: 10.1111/tan.14981. PMID: 36720674.
58. van Deutekom HW, Mulder W, Rozemuller EH. 2019; Accuracy of NGS HLA typing data influenced by STR. Hum Immunol. 80:461–4. DOI: 10.1016/j.humimm.2019.03.007. PMID: 30926353.
59. Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, et al. 2015; HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med. 7:25. DOI: 10.1186/s13073-015-0145-3. PMID: 25908942. PMCID: PMC4407542.
60. Tu B, Cha N, Yang R, Ng J, Hurley CK. 2013; A one-step DNA sequencing strategy to HLA type hematopoietic stem cell donors at recruitment: rethinking typing strategies. Tissue Antigens. 81:150–60. DOI: 10.1111/tan.12072. PMID: 23398508. PMCID: PMC4189109.
61. Holcomb CL, Höglund B, Anderson MW, Blake LA, Böhme I, Egholm M, et al. 2011; A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens. 77:206–17. DOI: 10.1111/j.1399-0039.2010.01606.x. PMID: 21299525. PMCID: PMC4205124.
62. Kong D, Lee N, Dela Cruz ID, Dames C, Maruthamuthu S, Golden T, et al. 2021; Concurrent typing of over 4000 samples by long-range PCR amplicon-based NGS and rSSO revealed the need to verify NGS typing for HLA allelic dropouts. Hum Immunol. 82:581–7. DOI: 10.1016/j.humimm.2021.04.008. PMID: 33980471.
63. Lange V, Böhme I, Hofmann J, Lang K, Sauter J, Schöne B, et al. 2014; Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics. 15:63. DOI: 10.1186/1471-2164-15-63. PMID: 24460756. PMCID: PMC3909933.
64. Walsh PS, Erlich HA, Higuchi R. 1992; Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1:241–50. DOI: 10.1101/gr.1.4.241. PMID: 1477658.
65. Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, et al. 2012; HLA typing from RNA-Seq sequence reads. Genome Med. 4:102. DOI: 10.1186/gm403. PMID: 23259685. PMCID: PMC4064318.
66. Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D'Argenio V. 2024; The third-generation sequencing challenge: novel insights for the omic sciences. Biomolecules. 14:568. DOI: 10.3390/biom14050568. PMID: 38785975. PMCID: PMC11117673.
67. Ambardar S, Gowda M. 2018; High-resolution full-length HLA typing method using third generation (Pac-Bio SMRT) sequencing technology. Methods Mol Biol. 1802:135–53. DOI: 10.1007/978-1-4939-8546-3_9. PMID: 29858806.
68. Buhler S, Nørgaard M, Steffensen R, Kløve-Mogensen K, Møller BK, Grossmann R, et al. 2024; High resolution HLA genotyping with third generation sequencing technology: a multicentre study. HLA. 104:e15632. DOI: 10.1111/tan.15632. PMID: 39132735.
69. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. 2009; Real-time DNA sequencing from single polymerase molecules. Science. 323:133–8. DOI: 10.1126/science.1162986. PMID: 19023044.
70. Jain M, Olsen HE, Paten B, Akeson M. 2016; The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17:239. DOI: 10.1186/s13059-016-1103-0. PMID: 27887629. PMCID: PMC5124260.
71. Profaizer T, Kumánovics A. 2018; Human leukocyte antigen typing by next-generation sequencing. Clin Lab Med. 38:565–78. DOI: 10.1016/j.cll.2018.07.006. PMID: 30420053.
72. Matern BM, Olieslagers TI, Groeneweg M, Duygu B, Wieten L, Tilanus MG, et al. 2020; Long-read nanopore sequencing validated for human leukocyte antigen class I typing in routine Diagnostics. J Mol Diagn. 22:912–9. DOI: 10.1016/j.jmoldx.2020.04.001. PMID: 32302780.
73. Rhoads A, Au KF. 2015; PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 13:278–89. DOI: 10.1016/j.gpb.2015.08.002. PMID: 26542840. PMCID: PMC4678779.
74. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. 2019; Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 37:1155–62. DOI: 10.1038/s41587-019-0217-9. PMID: 31406327. PMCID: PMC6776680.
75. Turner TR, Hayhurst JD, Hayward DR, Bultitude WP, Barker DJ, Robinson J, et al. 2018; Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines. HLA. 91:88–101. DOI: 10.1111/tan.13184. PMID: 29171935.
76. Albrecht V, Zweiniger C, Surendranath V, Lang K, Schöfl G, Dahl A, et al. 2017; Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA. 90:79–87. DOI: 10.1111/tan.13057. PMID: 28547825. PMCID: PMC6084308.
77. Mosbruger TL, Dinou A, Duke JL, Ferriola D, Mehler H, Pagkrati I, et al. 2020; Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing. Hum Immunol. 81:413–22. DOI: 10.1016/j.humimm.2020.06.004. PMID: 32595056. PMCID: PMC7870017.
78. Duke JL, Mosbruger TL, Ferriola D, Chitnis N, Hu T, Tairis N, et al. 2019; Resolving MiSeq-generated ambiguities in HLA-DPB1 typing by using the Oxford Nanopore technology. J Mol Diagn. 21:852–61. DOI: 10.1016/j.jmoldx.2019.04.009. PMID: 31173929. PMCID: PMC6734860.
79. Devriese M, Rouquie J, Da Silva S, Benassaya N, Maillard L, Dewez M, et al. 2024; Single locus HLA sequencing with the nanopore technology for HLA disease association diagnosis. HLA. 103:e15424. DOI: 10.1111/tan.15424. PMID: 38516926.
80. Liu C, Xiao F, Hoisington-Lopez J, Lang K, Quenzel P, Duffy B, et al. 2018; Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore sequencing. J Mol Diagn. 20:428–35. DOI: 10.1016/j.jmoldx.2018.02.006. PMID: 29625249. PMCID: PMC6039791.
81. Liu C, Yang X, Duffy BF, Hoisington-Lopez J, Crosby M, Porche-Sorbet R, et al. 2021; High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum Immunol. 82:288–95. DOI: 10.1016/j.humimm.2021.02.005. PMID: 33612390.
82. De Santis D, Truong L, Martinez P, D'Orsogna L. 2020; Rapid high-resolution HLA genotyping by MinION Oxford Nanopore sequencing for deceased donor organ allocation. HLA. 96:141–62. DOI: 10.1111/tan.13901. PMID: 32274854.
83. Fürst D, Müller C, Vucinic V, Bunjes D, Herr W, Gramatzki M, et al. 2013; High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 122:3220–9. DOI: 10.1182/blood-2013-02-482547. PMID: 24046013.
84. Loiseau P, Busson M, Balere ML, Dormoy A, Bignon JD, Gagne K, et al. 2007; HLA Association with hematopoietic stem cell transplantation outcome: the number of mismatches at HLA-A, -B, -C, -DRB1, or -DQB1 is strongly associated with overall survival. Biol Blood Marrow Transplant. 13:965–74. DOI: 10.1016/j.bbmt.2007.04.010. PMID: 17640601.
85. Caillat-Zucman S, Le Deist F, Haddad E, Gannagé M, Dal Cortivo L, Jabado N, et al. 2004; Impact of HLA matching on outcome of hematopoietic stem cell transplantation in children with inherited diseases: a single-center comparative analysis of genoidentical, haploidentical or unrelated donors. Bone Marrow Transplant. 33:1089–95. DOI: 10.1038/sj.bmt.1704510. PMID: 15077132.
86. Park M, Koh KN, Kim BE, Im HJ, Park KD, Kang HJ, et al. 2011; The impact of HLA matching on unrelated donor hematopoietic stem cell transplantation in Korean children. Korean J Hematol. 46:11–7. DOI: 10.5045/kjh.2011.46.1.11. PMID: 21461298. PMCID: PMC3065620.
87. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. 2004; Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 104:1923–30. DOI: 10.1182/blood-2004-03-0803. PMID: 15191952.
88. Vazirabad I, Chhabra S, Nytes J, Mehra V, Narra RK, Szabo A, et al. 2019; Direct HLA genetic comparisons identify highly matched unrelated donor-recipient pairs with improved transplantation outcome. Biol Blood Marrow Transplant. 25:921–31. DOI: 10.1016/j.bbmt.2018.12.006. PMID: 30537549.
89. Mayor NP, Hayhurst JD, Turner TR, Szydlo RM, Shaw BE, Bultitude WP, et al. 2019; Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: a retrospective study. Biol Blood Marrow Transplant. 25:443–50. DOI: 10.1016/j.bbmt.2018.12.768. PMID: 30935664.
90. Shaw BE, Arguello R, Garcia-Sepulveda CA, Madrigal JA. 2010; The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation. Br J Haematol. 150:251–8. DOI: 10.1111/j.1365-2141.2010.08224.x. PMID: 20560963.
91. Mayor NP, Wang T, Lee SJ, Kuxhausen M, Vierra-Green C, Barker DJ, et al. 2021; Impact of previously unrecognized HLA mismatches using ultrahigh resolution typing in unrelated donor hematopoietic cell transplantation. J Clin Oncol. 39:2397–409. DOI: 10.1200/JCO.20.03643. PMID: 33835855. PMCID: PMC8280068.
92. Leeaphorn N, Pena JR, Thamcharoen N, Khankin EV, Pavlakis M, Cardarelli F. 2018; HLA-DQ mismatching and kidney transplant outcomes. Clin J Am Soc Nephrol. 13:763–71. DOI: 10.2215/CJN.10860917. PMID: 29685925. PMCID: PMC5968890.
93. Shaw BE, Gooley TA, Malkki M, Madrigal JA, Begovich AB, Horowitz MM, et al. 2007; The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood. 110:4560–6. DOI: 10.1182/blood-2007-06-095265. PMID: 17726164.
94. Sanfilippo F, Vaughn WK, Spees EK, Light JA, LeFor WM. 1984; Benefits of HLA-A and HLA-B matching on graft and patient outcome after cadaveric-donor renal transplantation. N Engl J Med. 311:358–64. DOI: 10.1056/NEJM198408093110603. PMID: 6377075.
95. Kosmoliaptsis V, Sharples LD, Chaudhry A, Johnson RJ, Fuggle SV, Halsall DJ, et al. 2010; HLA class I amino acid sequence-based matching after interlocus subtraction and long-term outcome after deceased donor kidney transplantation. Hum Immunol. 71:851–6. DOI: 10.1016/j.humimm.2010.06.003. PMID: 20538027.
96. Ansari D, Bućin D, Nilsson J. 2014; Human leukocyte antigen matching in heart transplantation: systematic review and meta-analysis. Transpl Int. 27:793–804. DOI: 10.1111/tri.12335. PMID: 24725030.
97. Lentine KL, Smith JM, Miller JM, Bradbrook K, Larkin L, Weiss S, et al. 2023; OPTN/SRTR 2021 annual data report: kidney. Am J Transplant. 23(2 Suppl 1):S21–120. DOI: 10.1016/j.ajt.2023.02.004. PMID: 37132350. PMCID: PMC9970360.
98. Zavyalova D, Abraha J, Rao P, Morris GP. 2021; Incidence and impact of allele-specific anti-HLA antibodies and high-resolution HLA genotyping on assessing immunologic compatibility. Hum Immunol. 82:147–54. DOI: 10.1016/j.humimm.2021.01.002. PMID: 33478842.
99. Tambur AR. 2018; HLA-epitope matching or eplet risk stratification: the devil is in the details. Front Immunol. 9:2010. DOI: 10.3389/fimmu.2018.02010. PMID: 30233594. PMCID: PMC6128220.
100. Geneugelijk K, Spierings E. 2020; PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics. 72:119–29. DOI: 10.1007/s00251-019-01140-x. PMID: 31741009. PMCID: PMC6971131.
101. Lachmann N, Niemann M, Reinke P, Budde K, Schmidt D, Halleck F, et al. 2017; Donor-recipient matching based on predicted indirectly recognizable HLA epitopes independently predicts the incidence of de novo donor-specific HLA antibodies following renal transplantation. Am J Transplant. 17:3076–86. DOI: 10.1111/ajt.14393. PMID: 28613392.
102. Sakamoto S, Iwasaki K, Tomosugi T, Niemann M, Spierings E, Miwa Y, et al. 2020; Analysis of T and B cell epitopes to predict the risk of de novo donor-specific antibody (DSA) production after kidney transplantation: a two-center retrospective cohort study. Front Immunol. 11:2000. DOI: 10.3389/fimmu.2020.02000. PMID: 32973806. PMCID: PMC7481442.
103. Senev A, Van Loon E, Lerut E, Coemans M, Callemeyn J, Daniëls L, et al. 2022; Association of predicted HLA T-cell epitope targets and T-cell-mediated rejection after kidney transplantation. Am J Kidney Dis. 80:718–29. DOI: 10.1053/j.ajkd.2022.04.009. PMID: 35690154.
104. Geneugelijk K, Niemann M, Drylewicz J, van Zuilen AD, Joosten I, Allebes WA, et al. 2018; PIRCHE-II is related to graft failure after kidney transplantation. Front Immunol. 9:321. DOI: 10.3389/fimmu.2018.00321. PMID: 29556227. PMCID: PMC5844930.
105. Hosomichi K, Shiina T, Tajima A, Inoue I. 2015; The impact of next-generation sequencing technologies on HLA research. J Hum Genet. 60:665–73. DOI: 10.1038/jhg.2015.102. PMID: 26311539. PMCID: PMC4660052.
106. Song L, Bai G, Liu XS, Li B, Li H. 2023; Efficient and accurate KIR and HLA genotyping with massively parallel sequencing data. Genome Res. 33:923–31. DOI: 10.1101/gr.277585.122. PMID: 37169596. PMCID: PMC10519407.
107. Chen J, Madireddi S, Nagarkar D, Migdal M, Vander Heiden J, Chang D, et al. 2021; In silico tools for accurate HLA and KIR inference from clinical sequencing data empower immunogenetics on individual-patient and population scales. Brief Bioinform. 22:bbaa223. DOI: 10.1093/bib/bbaa223. PMID: 32940337. PMCID: PMC8138874.
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr