1. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CGL. 2018; Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics. 12:43. DOI:
10.1186/s40246-018-0175-1. PMID:
30219098. PMCID:
PMC6139121.
2. Geo JA, Ameen R, Al Shemmari S, Thomas J. 2024; Advancements in HLA typing techniques and their impact on transplantation medicine. Med Princ Pract. 33:215–31. DOI:
10.1159/000538176. PMID:
38442703. PMCID:
PMC11175610.
3. Huang Y, Dinh A, Heron S, Gasiewski A, Kneib C, Mehler H, et al. 2019; Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation. Am J Transplant. 19:1955–63. DOI:
10.1111/ajt.15258. PMID:
30623581.
4. Senev A, Emonds MP, Van Sandt V, Lerut E, Coemans M, Sprangers B, et al. 2020; Clinical importance of extended second field high-resolution HLA genotyping for kidney transplantation. Am J Transplant. 20:3367–78. DOI:
10.1111/ajt.15938. PMID:
32337773. PMCID:
PMC7754319.
5. Lechler R, Warrens A. HLA in health and disease. 2nd ed. Academic Press;2000.
6. Van Rood JJ, Eernisse JG, Van Leeuwen A. 1958; Leucocyte antibodies in sera from pregnant women. Nature. 181:1735–6. DOI:
10.1038/1811735a0. PMID:
13566127.
7. Terasaki PI, McClelland JD. 1964; Microdroplet assay of human serum cytotoxins. Nature. 204:998–1000. DOI:
10.1038/204998b0. PMID:
14248725.
8. Reynolds WM, Evans PR, Lane AC, Howell WM, Wilson PJ, Wong R, et al. 1994; Automated HLA-B27 testing using the FACSPrep/FACScan system. Cytometry. 18:109–15. DOI:
10.1002/cyto.990180210. PMID:
7924699.
9. Yang SY, Morishima Y, Collins NH, Alton T, Pollack MS, Yunis EJ, et al. 1984; Comparison of one-dimensional IEF patterns for serologically detectable HLA-A and B allotypes. Immunogenetics. 19:217–31. DOI:
10.1007/BF00364765. PMID:
6200434.
11. Eijsvoogel VP, van Rood JJ, Du Toit ED, Schellekens PT. 1972; Position of a locus determining mixed lymphocyte reaction distinct from the known HL-A loci. Eur J Immunol. 2:413–8. DOI:
10.1002/eji.1830020506. PMID:
4263770.
12. Luo Y, Kanai M, Choi W, Li X, Sakaue S, Yamamoto K, et al. 2021; A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat Genet. 53:1504–16. DOI:
10.1038/s41588-021-00935-7. PMID:
34611364. PMCID:
PMC8959399.
13. Eng HS, Leffell MS. 2011; Histocompatibility testing after fifty years of transplantation. J Immunol Methods. 369:1–21. DOI:
10.1016/j.jim.2011.04.005. PMID:
21530531.
14. Lorentzen DF, Iwanaga KK, Meuer KJ, Moritz TL, Watkins DI. 1997; A 25% error rate in serologic typing of HLA-B homozygotes. Tissue Antigens. 50:359–65. DOI:
10.1111/j.1399-0039.1997.tb02888.x. PMID:
9349620.
15. Hurley CK, Fernandez-Vina M, Hildebrand WH, Noreen HJ, Trachtenberg E, Williams TM, et al. 2007; A high degree of HLA disparity arises from limited allelic diversity: analysis of 1775 unrelated bone marrow transplant donor-recipient pairs. Hum Immunol. 68:30–40. DOI:
10.1016/j.humimm.2006.09.004. PMID:
17207710.
16. Mickelson EM, Bartsch GE, Hansen JA, Dupont B. 1993; The MLC assay as a test for HLA-D region compatibility between patients and unrelated donors: results of a national marrow donor program involving multiple centers. Tissue Antigens. 42:465–72. DOI:
10.1111/j.1399-0039.1993.tb02190.x. PMID:
8146857.
18. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. 1986; Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 324:163–6. DOI:
10.1038/324163a0. PMID:
3785382.
19. Saiki RK, Walsh PS, Levenson CH, Erlich HA. 1989; Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 86:6230–4. DOI:
10.1073/pnas.86.16.6230. PMID:
2762325. PMCID:
PMC297811.
20. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr. 1997; Advanced multiplexed analysis with the FlowMetrix system. Clin Chem. 43:1749–56. DOI:
10.1093/clinchem/43.9.1749. PMID:
9299971.
21. Won DI. 2017; A novel analysis strategy for HLA typing using a sequence-specific oligonucleotide probe method. HLA. 90:276–83. DOI:
10.1111/tan.13114. PMID:
28796439.
22. Olerup O, Zetterquist H. 1992; HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens. 39:225–35. DOI:
10.1111/j.1399-0039.1992.tb01940.x. PMID:
1357775.
23. Wu DY, Ugozzoli L, Pal BK, Wallace RB. 1989; Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 86:2757–60. DOI:
10.1073/pnas.86.8.2757. PMID:
2704745. PMCID:
PMC286997.
24. Bunce M, Welsh KI. 1994; Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles. Tissue Antigens. 43:7–17. DOI:
10.1111/j.1399-0039.1994.tb02290.x. PMID:
7912861.
25. Bunce M, Fanning GC, Welsh KI. 1995; Comprehensive, serologically equivalent DNA typing for HLA-B by PCR using sequence-specific primers (PCR-SSP). Tissue Antigens. 45:81–90. DOI:
10.1111/j.1399-0039.1995.tb02422.x. PMID:
7792765.
27. Bunce M, O'Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, et al. 1995; Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens. 46:355–67. DOI:
10.1111/j.1399-0039.1995.tb03127.x. PMID:
8838344.
28. McGinnis MD, Conrad MP, Bouwens AG, Tilanus MG, Kronick MN. 1995; Automated, solid-phase sequencing of DRB region genes using T7 sequencing chemistry and dye-labeled primers. Tissue Antigens. 46(3 Pt 1):173–9. DOI:
10.1111/j.1399-0039.1995.tb03116.x. PMID:
8525476.
29. Voorter CE, Rozemuller EH, de Bruyn-Geraets D, van der Zwan AW, Tilanus MG, van den Berg-Loonen EM. 1997; Comparison of DRB sequence-based typing using different strategies. Tissue Antigens. 49:471–6. DOI:
10.1111/j.1399-0039.1997.tb02781.x. PMID:
9174139.
30. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG. 2011; The IMGT/HLA database. Nucleic Acids Res. 39:D1171–6. DOI:
10.1093/nar/gkq998. PMID:
21071412. PMCID:
PMC3013815.
31. Versluis LF, Rozemuller E, Tonks S, Marsh SG, Bouwens AG, Bodmer JG, et al. 1993; High-resolution HLA-DPB typing based upon computerized analysis of data obtained by fluorescent sequencing of the amplified polymorphic exon 2. Hum Immunol. 38:277–83. DOI:
10.1016/0198-8859(93)90555-F. PMID:
8138423.
32. Voorter CE, Kik MC, van den Berg-Loonen EM. 1998; High-resolution HLA typing for the DQB1 gene by sequence-based typing. Tissue Antigens. 51:80–7. DOI:
10.1111/j.1399-0039.1998.tb02950.x. PMID:
9459507.
33. Scheltinga SA, Johnston-Dow LA, White CB, van der Zwan AW, Bakema JE, Rozemuller EH, et al. 1997; A generic sequencing based typing approach for the identification of HLA-A diversity. Hum Immunol. 57:120–8. DOI:
10.1016/S0198-8859(97)00204-8. PMID:
9438203.
34. van der Vlies SA, Voorter CE, van den Berg-Loonen EM. 1999; There is more to HLA-C than exons 2 and 3: sequencing exons 1, 4 and 5. Tissue Antigens. 54:169–77. DOI:
10.1034/j.1399-0039.1999.540208.x. PMID:
10488744.
35. Swelsen WT, Voorter CE, van den Berg-Loonen EM. 2002; Sequence analysis of exons 1, 2, 3, 4 and 5 of the HLA-B5/35 cross-reacting group. Tissue Antigens. 60:224–34. DOI:
10.1034/j.1399-0039.2002.600304.x. PMID:
12445305.
36. Swelsen WT, Voorter CE, van den Berg-Loonen EM. 2004; Ambiguities of human leukocyte antigen-B resolved by sequence-based typing of exons 1, 4, and 5. Tissue Antigens. 63:248–54. DOI:
10.1111/j.1399-0039.2004.00181.x. PMID:
14989714.
37. Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Charron D, et al. 1997; Nomenclature for factors of the HLA system, 1996. Tissue Antigens. 49(3 Pt 2):297–321. DOI:
10.1111/j.1399-0039.1997.tb02759.x. PMID:
9098945.
38. Prasad VK, Kernan NA, Heller G, O'Reilly RJ, Yang SY. 1999; DNA typing for HLA-A and HLA-B identifies disparities between patients and unrelated donors matched by HLA-A and HLA-B serology and HLA-DRB1. Blood. 93:399–409. DOI:
10.1182/blood.V93.1.399. PMID:
9864187.
39. Bugawan TL, Erlich HA. 1991; Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics. 33:163–70. DOI:
10.1007/BF01719235. PMID:
2010218.
40. Robinson J, Barker DJ, Marsh SG. 2024; 25 years of the IPD-IMGT/HLA database. HLA. 103:e15549. DOI:
10.1111/tan.15549. PMID:
38936817.
41. Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, Slavich L, et al. 2010; Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol. 71:1033–42. DOI:
10.1016/j.humimm.2010.06.016. PMID:
20603174.
42. Adams SD, Barracchini KC, Chen D, Robbins F, Wang L, Larsen P, et al. 2004; Ambiguous allele combinations in HLA class I and class II sequence-based typing: when precise nucleotide sequencing leads to imprecise allele identification. J Transl Med. 2:30. DOI:
10.1186/1479-5876-2-30. PMID:
15363110. PMCID:
PMC517951.
43. Shiina T, Suzuki S, Ozaki Y, Taira H, Kikkawa E, Shigenari A, et al. 2012; Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens. 80:305–16. DOI:
10.1111/j.1399-0039.2012.01941.x. PMID:
22861646.
44. Voorter CE, Palusci F, Tilanus MG. 2014; Sequence-based typing of HLA: an improved group-specific full-length gene sequencing approach. Methods Mol Biol. 1109:101–14. DOI:
10.1007/978-1-4614-9437-9_7. PMID:
24473781.
45. Vayntrub TA, Mack SJ, Fernandez-Viña MA. 2020; Preface: 17th International HLA and Immunogenetics Workshop. Hum Immunol. 81:52–8. DOI:
10.1016/j.humimm.2020.01.008. PMID:
32051104.
46. Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, et al. 2012; High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A. 109:8676–81. DOI:
10.1073/pnas.1206614109. PMID:
22589303. PMCID:
PMC3365218.
47. Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, et al. 2009; High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens. 74:393–403. DOI:
10.1111/j.1399-0039.2009.01345.x. PMID:
19845894. PMCID:
PMC4205125.
48. Gabriel C, Danzer M, Hackl C, Kopal G, Hufnagl P, Hofer K, et al. 2009; Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol. 70:960–4. DOI:
10.1016/j.humimm.2009.08.009. PMID:
19706315.
49. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, et al. 2012; Derivation of HLA types from shotgun sequence datasets. Genome Med. 4:95. DOI:
10.1186/gm396. PMID:
23228053. PMCID:
PMC3580435.
50. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. 2014; OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 30:3310–6. DOI:
10.1093/bioinformatics/btu548. PMID:
25143287. PMCID:
PMC4441069.
51. Carapito R, Radosavljevic M, Bahram S. 2016; Next-generation sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies. Hum Immunol. 77:1016–23. DOI:
10.1016/j.humimm.2016.04.002. PMID:
27060029.
52. Bravo-Egana V, Sanders H, Chitnis N. 2021; New challenges, new opportunities: next generation sequencing and its place in the advancement of HLA typing. Hum Immunol. 82:478–87. DOI:
10.1016/j.humimm.2021.01.010. PMID:
33551127.
53. Cereb N, Kim HR, Ryu J, Yang SY. 2015; Advances in DNA sequencing technologies for high resolution HLA typing. Hum Immunol. 76:923–7. DOI:
10.1016/j.humimm.2015.09.015. PMID:
26423536.
54. Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, et al. 2016; Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA. 87:141–52. DOI:
10.1111/tan.12736. PMID:
26880737.
55. Danzer M, Niklas N, Stabentheiner S, Hofer K, Pröll J, Stückler C, et al. 2013; Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics. 14:221. DOI:
10.1186/1471-2164-14-221. PMID:
23557197. PMCID:
PMC3639865.
56. Baek IC, Choi EJ, Shin DH, Kim HJ, Choi H, Kim TG. 2021; Distributions of HLA-A, -B, and -DRB1 alleles typed by amplicon-based next generation sequencing in Korean volunteer donors for unrelated hematopoietic stem cell transplantation. HLA. 97:112–26. DOI:
10.1111/tan.14134. PMID:
33179442.
57. Baek IC, Choi EJ, Kim HJ, Choi H, Kim TG. 2023; Distributions of 11-loci HLA alleles typed by amplicon-based next-generation sequencing in South Koreans. HLA. 101:613–22. DOI:
10.1111/tan.14981. PMID:
36720674.
59. Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, et al. 2015; HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med. 7:25. DOI:
10.1186/s13073-015-0145-3. PMID:
25908942. PMCID:
PMC4407542.
60. Tu B, Cha N, Yang R, Ng J, Hurley CK. 2013; A one-step DNA sequencing strategy to HLA type hematopoietic stem cell donors at recruitment: rethinking typing strategies. Tissue Antigens. 81:150–60. DOI:
10.1111/tan.12072. PMID:
23398508. PMCID:
PMC4189109.
61. Holcomb CL, Höglund B, Anderson MW, Blake LA, Böhme I, Egholm M, et al. 2011; A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens. 77:206–17. DOI:
10.1111/j.1399-0039.2010.01606.x. PMID:
21299525. PMCID:
PMC4205124.
62. Kong D, Lee N, Dela Cruz ID, Dames C, Maruthamuthu S, Golden T, et al. 2021; Concurrent typing of over 4000 samples by long-range PCR amplicon-based NGS and rSSO revealed the need to verify NGS typing for HLA allelic dropouts. Hum Immunol. 82:581–7. DOI:
10.1016/j.humimm.2021.04.008. PMID:
33980471.
63. Lange V, Böhme I, Hofmann J, Lang K, Sauter J, Schöne B, et al. 2014; Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics. 15:63. DOI:
10.1186/1471-2164-15-63. PMID:
24460756. PMCID:
PMC3909933.
64. Walsh PS, Erlich HA, Higuchi R. 1992; Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1:241–50. DOI:
10.1101/gr.1.4.241. PMID:
1477658.
65. Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, et al. 2012; HLA typing from RNA-Seq sequence reads. Genome Med. 4:102. DOI:
10.1186/gm403. PMID:
23259685. PMCID:
PMC4064318.
66. Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D'Argenio V. 2024; The third-generation sequencing challenge: novel insights for the omic sciences. Biomolecules. 14:568. DOI:
10.3390/biom14050568. PMID:
38785975. PMCID:
PMC11117673.
67. Ambardar S, Gowda M. 2018; High-resolution full-length HLA typing method using third generation (Pac-Bio SMRT) sequencing technology. Methods Mol Biol. 1802:135–53. DOI:
10.1007/978-1-4939-8546-3_9. PMID:
29858806.
68. Buhler S, Nørgaard M, Steffensen R, Kløve-Mogensen K, Møller BK, Grossmann R, et al. 2024; High resolution HLA genotyping with third generation sequencing technology: a multicentre study. HLA. 104:e15632. DOI:
10.1111/tan.15632. PMID:
39132735.
69. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. 2009; Real-time DNA sequencing from single polymerase molecules. Science. 323:133–8. DOI:
10.1126/science.1162986. PMID:
19023044.
70. Jain M, Olsen HE, Paten B, Akeson M. 2016; The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17:239. DOI:
10.1186/s13059-016-1103-0. PMID:
27887629. PMCID:
PMC5124260.
71. Profaizer T, Kumánovics A. 2018; Human leukocyte antigen typing by next-generation sequencing. Clin Lab Med. 38:565–78. DOI:
10.1016/j.cll.2018.07.006. PMID:
30420053.
72. Matern BM, Olieslagers TI, Groeneweg M, Duygu B, Wieten L, Tilanus MG, et al. 2020; Long-read nanopore sequencing validated for human leukocyte antigen class I typing in routine Diagnostics. J Mol Diagn. 22:912–9. DOI:
10.1016/j.jmoldx.2020.04.001. PMID:
32302780.
74. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. 2019; Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 37:1155–62. DOI:
10.1038/s41587-019-0217-9. PMID:
31406327. PMCID:
PMC6776680.
75. Turner TR, Hayhurst JD, Hayward DR, Bultitude WP, Barker DJ, Robinson J, et al. 2018; Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines. HLA. 91:88–101. DOI:
10.1111/tan.13184. PMID:
29171935.
76. Albrecht V, Zweiniger C, Surendranath V, Lang K, Schöfl G, Dahl A, et al. 2017; Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA. 90:79–87. DOI:
10.1111/tan.13057. PMID:
28547825. PMCID:
PMC6084308.
77. Mosbruger TL, Dinou A, Duke JL, Ferriola D, Mehler H, Pagkrati I, et al. 2020; Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing. Hum Immunol. 81:413–22. DOI:
10.1016/j.humimm.2020.06.004. PMID:
32595056. PMCID:
PMC7870017.
78. Duke JL, Mosbruger TL, Ferriola D, Chitnis N, Hu T, Tairis N, et al. 2019; Resolving MiSeq-generated ambiguities in HLA-DPB1 typing by using the Oxford Nanopore technology. J Mol Diagn. 21:852–61. DOI:
10.1016/j.jmoldx.2019.04.009. PMID:
31173929. PMCID:
PMC6734860.
79. Devriese M, Rouquie J, Da Silva S, Benassaya N, Maillard L, Dewez M, et al. 2024; Single locus HLA sequencing with the nanopore technology for HLA disease association diagnosis. HLA. 103:e15424. DOI:
10.1111/tan.15424. PMID:
38516926.
80. Liu C, Xiao F, Hoisington-Lopez J, Lang K, Quenzel P, Duffy B, et al. 2018; Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore sequencing. J Mol Diagn. 20:428–35. DOI:
10.1016/j.jmoldx.2018.02.006. PMID:
29625249. PMCID:
PMC6039791.
81. Liu C, Yang X, Duffy BF, Hoisington-Lopez J, Crosby M, Porche-Sorbet R, et al. 2021; High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum Immunol. 82:288–95. DOI:
10.1016/j.humimm.2021.02.005. PMID:
33612390.
82. De Santis D, Truong L, Martinez P, D'Orsogna L. 2020; Rapid high-resolution HLA genotyping by MinION Oxford Nanopore sequencing for deceased donor organ allocation. HLA. 96:141–62. DOI:
10.1111/tan.13901. PMID:
32274854.
83. Fürst D, Müller C, Vucinic V, Bunjes D, Herr W, Gramatzki M, et al. 2013; High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 122:3220–9. DOI:
10.1182/blood-2013-02-482547. PMID:
24046013.
84. Loiseau P, Busson M, Balere ML, Dormoy A, Bignon JD, Gagne K, et al. 2007; HLA Association with hematopoietic stem cell transplantation outcome: the number of mismatches at HLA-A, -B, -C, -DRB1, or -DQB1 is strongly associated with overall survival. Biol Blood Marrow Transplant. 13:965–74. DOI:
10.1016/j.bbmt.2007.04.010. PMID:
17640601.
85. Caillat-Zucman S, Le Deist F, Haddad E, Gannagé M, Dal Cortivo L, Jabado N, et al. 2004; Impact of HLA matching on outcome of hematopoietic stem cell transplantation in children with inherited diseases: a single-center comparative analysis of genoidentical, haploidentical or unrelated donors. Bone Marrow Transplant. 33:1089–95. DOI:
10.1038/sj.bmt.1704510. PMID:
15077132.
86. Park M, Koh KN, Kim BE, Im HJ, Park KD, Kang HJ, et al. 2011; The impact of HLA matching on unrelated donor hematopoietic stem cell transplantation in Korean children. Korean J Hematol. 46:11–7. DOI:
10.5045/kjh.2011.46.1.11. PMID:
21461298. PMCID:
PMC3065620.
87. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. 2004; Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 104:1923–30. DOI:
10.1182/blood-2004-03-0803. PMID:
15191952.
88. Vazirabad I, Chhabra S, Nytes J, Mehra V, Narra RK, Szabo A, et al. 2019; Direct HLA genetic comparisons identify highly matched unrelated donor-recipient pairs with improved transplantation outcome. Biol Blood Marrow Transplant. 25:921–31. DOI:
10.1016/j.bbmt.2018.12.006. PMID:
30537549.
89. Mayor NP, Hayhurst JD, Turner TR, Szydlo RM, Shaw BE, Bultitude WP, et al. 2019; Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: a retrospective study. Biol Blood Marrow Transplant. 25:443–50. DOI:
10.1016/j.bbmt.2018.12.768. PMID:
30935664.
90. Shaw BE, Arguello R, Garcia-Sepulveda CA, Madrigal JA. 2010; The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation. Br J Haematol. 150:251–8. DOI:
10.1111/j.1365-2141.2010.08224.x. PMID:
20560963.
91. Mayor NP, Wang T, Lee SJ, Kuxhausen M, Vierra-Green C, Barker DJ, et al. 2021; Impact of previously unrecognized HLA mismatches using ultrahigh resolution typing in unrelated donor hematopoietic cell transplantation. J Clin Oncol. 39:2397–409. DOI:
10.1200/JCO.20.03643. PMID:
33835855. PMCID:
PMC8280068.
92. Leeaphorn N, Pena JR, Thamcharoen N, Khankin EV, Pavlakis M, Cardarelli F. 2018; HLA-DQ mismatching and kidney transplant outcomes. Clin J Am Soc Nephrol. 13:763–71. DOI:
10.2215/CJN.10860917. PMID:
29685925. PMCID:
PMC5968890.
93. Shaw BE, Gooley TA, Malkki M, Madrigal JA, Begovich AB, Horowitz MM, et al. 2007; The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood. 110:4560–6. DOI:
10.1182/blood-2007-06-095265. PMID:
17726164.
94. Sanfilippo F, Vaughn WK, Spees EK, Light JA, LeFor WM. 1984; Benefits of HLA-A and HLA-B matching on graft and patient outcome after cadaveric-donor renal transplantation. N Engl J Med. 311:358–64. DOI:
10.1056/NEJM198408093110603. PMID:
6377075.
95. Kosmoliaptsis V, Sharples LD, Chaudhry A, Johnson RJ, Fuggle SV, Halsall DJ, et al. 2010; HLA class I amino acid sequence-based matching after interlocus subtraction and long-term outcome after deceased donor kidney transplantation. Hum Immunol. 71:851–6. DOI:
10.1016/j.humimm.2010.06.003. PMID:
20538027.
96. Ansari D, Bućin D, Nilsson J. 2014; Human leukocyte antigen matching in heart transplantation: systematic review and meta-analysis. Transpl Int. 27:793–804. DOI:
10.1111/tri.12335. PMID:
24725030.
97. Lentine KL, Smith JM, Miller JM, Bradbrook K, Larkin L, Weiss S, et al. 2023; OPTN/SRTR 2021 annual data report: kidney. Am J Transplant. 23(2 Suppl 1):S21–120. DOI:
10.1016/j.ajt.2023.02.004. PMID:
37132350. PMCID:
PMC9970360.
98. Zavyalova D, Abraha J, Rao P, Morris GP. 2021; Incidence and impact of allele-specific anti-HLA antibodies and high-resolution HLA genotyping on assessing immunologic compatibility. Hum Immunol. 82:147–54. DOI:
10.1016/j.humimm.2021.01.002. PMID:
33478842.
100. Geneugelijk K, Spierings E. 2020; PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics. 72:119–29. DOI:
10.1007/s00251-019-01140-x. PMID:
31741009. PMCID:
PMC6971131.
101. Lachmann N, Niemann M, Reinke P, Budde K, Schmidt D, Halleck F, et al. 2017; Donor-recipient matching based on predicted indirectly recognizable HLA epitopes independently predicts the incidence of de novo donor-specific HLA antibodies following renal transplantation. Am J Transplant. 17:3076–86. DOI:
10.1111/ajt.14393. PMID:
28613392.
102. Sakamoto S, Iwasaki K, Tomosugi T, Niemann M, Spierings E, Miwa Y, et al. 2020; Analysis of T and B cell epitopes to predict the risk of de novo donor-specific antibody (DSA) production after kidney transplantation: a two-center retrospective cohort study. Front Immunol. 11:2000. DOI:
10.3389/fimmu.2020.02000. PMID:
32973806. PMCID:
PMC7481442.
103. Senev A, Van Loon E, Lerut E, Coemans M, Callemeyn J, Daniëls L, et al. 2022; Association of predicted HLA T-cell epitope targets and T-cell-mediated rejection after kidney transplantation. Am J Kidney Dis. 80:718–29. DOI:
10.1053/j.ajkd.2022.04.009. PMID:
35690154.
104. Geneugelijk K, Niemann M, Drylewicz J, van Zuilen AD, Joosten I, Allebes WA, et al. 2018; PIRCHE-II is related to graft failure after kidney transplantation. Front Immunol. 9:321. DOI:
10.3389/fimmu.2018.00321. PMID:
29556227. PMCID:
PMC5844930.
105. Hosomichi K, Shiina T, Tajima A, Inoue I. 2015; The impact of next-generation sequencing technologies on HLA research. J Hum Genet. 60:665–73. DOI:
10.1038/jhg.2015.102. PMID:
26311539. PMCID:
PMC4660052.
106. Song L, Bai G, Liu XS, Li B, Li H. 2023; Efficient and accurate KIR and HLA genotyping with massively parallel sequencing data. Genome Res. 33:923–31. DOI:
10.1101/gr.277585.122. PMID:
37169596. PMCID:
PMC10519407.
107. Chen J, Madireddi S, Nagarkar D, Migdal M, Vander Heiden J, Chang D, et al. 2021; In silico tools for accurate HLA and KIR inference from clinical sequencing data empower immunogenetics on individual-patient and population scales. Brief Bioinform. 22:bbaa223. DOI:
10.1093/bib/bbaa223. PMID:
32940337. PMCID:
PMC8138874.