3. Felix NJ, Donermeyer DL, Horvath S, Walters JJ, Gross ML, Suri A, et al. 2007; Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol. 8:388–97. DOI:
10.1038/ni1446. PMID:
17322886.
7. Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, et al. 2009; A hypervariable invertebrate allodeterminant. Curr Biol. 19:583–9. DOI:
10.1016/j.cub.2009.02.040. PMID:
19303297. PMCID:
PMC2681180.
8. Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA, Grimwood J, et al. 2010; Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol. 20:1122–7. DOI:
10.1016/j.cub.2010.04.050. PMID:
20537535. PMCID:
PMC2921677.
9. Huene AL, Sanders SM, Ma Z, Nguyen AD, Koren S, Michaca MH, et al. 2022; A family of unusual immunoglobulin superfamily genes in an invertebrate histocompatibility complex. Proc Natl Acad Sci U S A. 119:e2207374119. DOI:
10.1073/pnas.2207374119. PMID:
36161920. PMCID:
PMC9546547.
13. Lechler RI, Lombardi G, Batchelor JR, Reinsmoen N, Bach FH. 1990; The molecular basis of alloreactivity. Immunol Today. 11:83–8. DOI:
10.1016/0167-5699(90)90033-6. PMID:
2186745.
14. Benichou G, Takizawa PA, Olson CA, McMillan M, Sercarz EE. 1992; Donor major histocompatibility complex (MHC) peptides are presented by recipient MHC molecules during graft rejection. J Exp Med. 175:305–8. DOI:
10.1084/jem.175.1.305. PMID:
1730925. PMCID:
PMC2119070.
15. Fangmann J, Dalchau R, Fabre JW. 1992; Rejection of skin allografts by indirect allorecognition of donor class I major histocompatibility complex peptides. J Exp Med. 175:1521–9. DOI:
10.1084/jem.175.6.1521. PMID:
1588278. PMCID:
PMC2119238.
17. Liu Z, Sun YK, Xi YP, Maffei A, Reed E, Harris P, et al. 1993; Contribution of direct and indirect recognition pathways to T cell alloreactivity. J Exp Med. 177:1643–50. DOI:
10.1084/jem.177.6.1643. PMID:
7684431. PMCID:
PMC2191044.
18. Harper SJ, Ali JM, Wlodek E, Negus MC, Harper IG, Chhabra M, et al. 2015; CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Natl Acad Sci U S A. 112:12788–93. DOI:
10.1073/pnas.1513533112. PMID:
26420874. PMCID:
PMC4611606.
19. Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, et al. 2016; Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 1:aaf8759. DOI:
10.1126/sciimmunol.aaf8759. PMID:
27942611. PMCID:
PMC5142759.
20. Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, et al. 2016; Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 126:2805–20. DOI:
10.1172/JCI84577. PMID:
27348586. PMCID:
PMC4966303.
21. Brown K, Sacks SH, Wong W. 2011; Coexpression of donor peptide/recipient MHC complex and intact donor MHC: evidence for a link between the direct and indirect pathways. Am J Transplant. 11:826–31. DOI:
10.1111/j.1600-6143.2011.03437.x. PMID:
21401861.
22. Smyth LA, Afzali B, Tsang J, Lombardi G, Lechler RI. 2007; Intercellular transfer of MHC and immunological molecules: molecular mechanisms and biological significance. Am J Transplant. 7:1442–9. DOI:
10.1111/j.1600-6143.2007.01816.x. PMID:
17511673. PMCID:
PMC3815510.
26. Matzinger P, Bevan MJ. 1977; Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 29:1–5. DOI:
10.1016/0008-8749(77)90269-6. PMID:
300293.
27. Lombardi G, Sidhu S, Batchelor JR, Lechler RI. 1989; Allorecognition of DR1 by T cells from a DR4/DRw13 responder mimics self-restricted recognition of endogenous peptides. Proc Natl Acad Sci U S A. 86:4190–4. DOI:
10.1073/pnas.86.11.4190. PMID:
2657745. PMCID:
PMC287416.
28. Lechler R, Lombardi G. 1990; The structural basis of alloreactivity. Immunol Res. 9:135–46. DOI:
10.1007/BF02918204. PMID:
2189936.
31. Burrows SR, Silins SL, Khanna R, Burrows JM, Rischmueller M, McCluskey J, et al. 1997; Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur J Immunol. 27:1726–36. DOI:
10.1002/eji.1830270720. PMID:
9247584.
32. Burrows SR, Khanna R, Burrows JM, Moss DJ. 1994; An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J Exp Med. 179:1155–61. DOI:
10.1084/jem.179.4.1155. PMID:
7511682. PMCID:
PMC2191444.
33. Brehm MA, Markees TG, Daniels KA, Greiner DL, Rossini AA, Welsh RM. 2003; Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J Immunol. 170:4077–86. DOI:
10.4049/jimmunol.170.8.4077. PMID:
12682237.
36. Reiser JB, Darnault C, Guimezanes A, Grégoire C, Mosser T, Schmitt-Verhulst AM, et al. 2000; Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat Immunol. 1:291–7. DOI:
10.1038/79728. PMID:
11017099.
37. Luz JG, Huang M, Garcia KC, Rudolph MG, Apostolopoulos V, Teyton L, et al. 2002; Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) interactions. J Exp Med. 195:1175–86. DOI:
10.1084/jem.20011644. PMID:
11994422. PMCID:
PMC2193710.
38. Murphy B, Auchincloss H Jr, Carpenter CB, Sayegh MH. 1996; T cell recognition of xeno-MHC peptides during concordant xenograft rejection. Transplantation. 61:1133–7. DOI:
10.1097/00007890-199604270-00001. PMID:
8610405.
39. Buhler L, Illigens BM, Nadazdin O, Tena A, Lee S, Sachs DH, et al. 2016; Persistence of indirect but not direct T cell xenoresponses in baboon recipients of pig cell and organ transplants. Am J Transplant. 16:1917–22. DOI:
10.1111/ajt.13695. PMID:
26718119. PMCID:
PMC4874842.
40. Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. 2008; T-cell allorecognition: a case of mistaken identity or déjà vu? Trends Immunol. 29:220–6. DOI:
10.1016/j.it.2008.02.005. PMID:
18378495.
41. D'Orsogna LJ, Nguyen TH, Claas FH, Witt C, Mifsud NA. 2013; Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications. Tissue Antigens. 81:399–407. DOI:
10.1111/tan.12115. PMID:
23646948.
42. Morris GP, Ni PP, Allen PM. 2011; Alloreactivity is limited by the endogenous peptide repertoire. Proc Natl Acad Sci U S A. 108:3695–700. DOI:
10.1073/pnas.1017015108. PMID:
21321209. PMCID:
PMC3048116.
43. Amir AL, Hagedoorn RS, van Luxemburg-Heijs SA, Marijt EW, Kruisselbrink AB, Frederik Falkenburg JH, et al. 2012; Identification of a coordinated CD8 and CD4 T cell response directed against mismatched HLA Class I causing severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 18:210–9. DOI:
10.1016/j.bbmt.2011.10.018. PMID:
22015995.
44. Son ET, Faridi P, Paul-Heng M, Leong ML, English K, Ramarathinam SH, et al. 2021; The self-peptide repertoire plays a critical role in transplant tolerance induction. J Clin Invest. 131:e146771. DOI:
10.1172/JCI146771. PMID:
34428180. PMCID:
PMC8553557.
45. Lechler RI, Batchelor JR. 1982; Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med. 155:31–41. DOI:
10.1084/jem.155.1.31. PMID:
7033437. PMCID:
PMC2186574.
46. Liu Z, Braunstein NS, Suciu-Foca N. 1992; T cell recognition of allopeptides in context of syngeneic MHC. J Immunol. 148:35–40. DOI:
10.4049/jimmunol.148.1.35. PMID:
1530797.
47. Fangmann J, Dalchau R, Sawyer GJ, Priestley CA, Fabre JW. 1992; T cell recognition of donor major histocompatibility complex class I peptides during allograft rejection. Eur J Immunol. 22:1525–30. DOI:
10.1002/eji.1830220627. PMID:
1601039.
48. Liu Z, Sun YK, Xi YP, Hong B, Harris PE, Reed EF, et al. 1993; Limited usage of T cell receptor V beta genes by allopeptide-specific T cells. J Immunol. 150(8 Pt 1):3180–6. DOI:
10.4049/jimmunol.150.8.3180. PMID:
8468463.
49. Benichou G, Fedoseyeva E, Lehmann PV, Olson CA, Geysen HM, McMillan M, et al. 1994; Limited T cell response to donor MHC peptides during allograft rejection. Implications for selective immune therapy in transplantation. J Immunol. 153:938–45. DOI:
10.4049/jimmunol.153.3.938. PMID:
7517977.
50. Celli S, Albert ML, Bousso P. 2011; Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med. 17:744–9. DOI:
10.1038/nm.2376. PMID:
21572426.
52. Arnold D, Faath S, Rammensee H, Schild H. 1995; Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med. 182:885–9. DOI:
10.1084/jem.182.3.885. PMID:
7650492. PMCID:
PMC2192175.
53. Carbone FR, Bevan MJ. 1990; Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med. 171:377–87. DOI:
10.1084/jem.171.2.377. PMID:
2137512. PMCID:
PMC2187713.
55. Matzinger P, Bevan MJ. 1977; Induction of H-2-restricted cytotoxic T cells: in vivo induction has the appearance of being unrestricted. Cell Immunol. 33:92–100. DOI:
10.1016/0008-8749(77)90137-X. PMID:
20229.
56. Golding H, Singer A. 1984; Role of accessory cell processing and presentation of shed H-2 alloantigens in allospecific cytotoxic T lymphocyte responses. J Immunol. 133:597–605. DOI:
10.4049/jimmunol.133.2.597. PMID:
6203969.
57. Breur-Vriesendorp BS, Ivanyi P. 1993; Self-restricted primary human histocompatibility leukocyte antigen (HLA)-specific cytotoxic T lymphocytes. Int Immunol. 5:103–7. DOI:
10.1093/intimm/5.1.103. PMID:
8443120.
58. Popov IA, Fedoseyeva EV, Orr PL, Garovoy MR, Benichou G. 1995; Direct evidence for in vivo induction of CD8+ cytotoxic T cells directed to donor MHC class I peptides following mouse allotransplantation. Transplantation. 60:1621–4.
59. Kievits F, Ivanyi P. 1991; A subpopulation of mouse cytotoxic T lymphocytes recognizes allogeneic H-2 class I antigens in the context of other H-2 class I molecules. J Exp Med. 174:15–9. DOI:
10.1084/jem.174.1.15. PMID:
1905337. PMCID:
PMC2118870.
60. Kievits F, Ivanyi P. 1993; H-2 class I-restricted recognition of allogeneic class I peptides. Transplant Proc. 25(1 Pt 1):88.
61. Valujskikh A, Hartig C, Heeger PS. 2001; Indirectly primed CD8+ T cells are a prominent component of the allogeneic T-cell repertoire after skin graft rejection in mice. Transplantation. 71:418–21. DOI:
10.1097/00007890-200102150-00014. PMID:
11233904.
64. Hall JG. 1967; Studies of the cells in the afferent and efferent lymph of lymph nodes draining the site of skin homografts. J Exp Med. 125:737–54. DOI:
10.1084/jem.125.5.737. PMID:
5337308. PMCID:
PMC2138206.
65. Wachtel SS, Silvers WK. 1972; The role of passenger leukocytes in the anomalous survival of neonatal skin grafts in mice. J Exp Med. 135:388–404. DOI:
10.1084/jem.135.2.388. PMID:
4551219. PMCID:
PMC2180515.
66. Billingham RE, Silvers WK. 1967; Studies on the conservation of epidermal specificies of skin and certain mucosas in adult mammals. J Exp Med. 125:429–46. DOI:
10.1084/jem.125.3.429. PMID:
5334545. PMCID:
PMC2138290.
67. Barker CF, Billingham RE. 1966; Skin homografts in vascularized skin pedicles in guinea pigs. Surg Forum. 17:480–2.
68. Tilney NL, Gowans JL. 1970; Host sensitization by alymphatic skin allografts in the rat. Surg Forum. 21:512–4.
70. Barker CF, Billingham RE. 1972; Analysis of local anatomic factors that influence the survival times of pure epidermal and full-thickness skin homografts in guinea pigs. Ann Surg. 176:597–604. DOI:
10.1097/00000658-197211000-00004. PMID:
4562572. PMCID:
PMC1355365.
71. Smyth LA, Lechler RI, Lombardi G. 2017; Continuous acquisition of MHC: peptide complexes by recipient cells contributes to the generation of anti-graft CD8+ T cell immunity. Am J Transplant. 17:60–8. DOI:
10.1111/ajt.13996. PMID:
27495898. PMCID:
PMC5213774.
72. Herrera OB, Golshayan D, Tibbott R, Salcido Ochoa F, James MJ, Marelli-Berg FM, et al. 2004; A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 173:4828–37. DOI:
10.4049/jimmunol.173.8.4828. PMID:
15470023.
73. Smyth LA, Herrera OB, Golshayan D, Lombardi G, Lechler RI. 2006; A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation. 82(1 Suppl):S15–8. DOI:
10.1097/01.tp.0000231347.06149.ca. PMID:
16829787.
74. Russo V, Zhou D, Sartirana C, Rovere P, Villa A, Rossini S, et al. 2000; Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood. 95:3473–7. DOI:
10.1182/blood.V95.11.3473. PMID:
10828031.
75. Warrens AN, Lombardi G, Lechler RI. 1994; Presentation and recognition of major and minor histocompatibility antigens. Transpl Immunol. 2:103–7. DOI:
10.1016/0966-3274(94)90036-1. PMID:
7953301.
76. Millrain M, Chandler P, Dazzi F, Scott D, Simpson E, Dyson PJ. 2001; Examination of HY response: T cell expansion, immunodominance, and cross-priming revealed by HY tetramer analysis. J Immunol. 167:3756–64. DOI:
10.4049/jimmunol.167.7.3756. PMID:
11564792.
77. Millrain M, Scott D, Addey C, Dewchand H, Ellis P, Ehrmann I, et al. 2005; Identification of the immunodominant HY H2-D(k) epitope and evaluation of the role of direct and indirect antigen presentation in HY responses. J Immunol. 175:7209–17. DOI:
10.4049/jimmunol.175.11.7209. PMID:
16301625.
78. Chen Y, Demir Y, Valujskikh A, Heeger PS. 2003; The male minor transplantation antigen preferentially activates recipient CD4+ T cells through the indirect presentation pathway in vivo. J Immunol. 171:6510–8. DOI:
10.4049/jimmunol.171.12.6510. PMID:
14662851.
79. Hippen BE, DeMattos A, Cook WJ, Kew CE 2nd, Gaston RS. 2005; Association of CD20+ infiltrates with poorer clinical outcomes in acute cellular rejection of renal allografts. Am J Transplant. 5:2248–52. DOI:
10.1111/j.1600-6143.2005.01009.x. PMID:
16095505.
80. Du JF, Li QY, Ji XQ, Chen G, Bai X, Zuo FY, et al. 2011; Inhibition of T-cell expansion caused by inducible costimulator/B7h costimulation blockade in direct allorecognition pathway. Transplant Proc. 43:3960–3. DOI:
10.1016/j.transproceed.2011.09.044. PMID:
22172879.
81. Csencsits K, Wood SC, Lu G, Magee JC, Eichwald EJ, Chang CH, et al. 2005; Graft rejection mediated by CD4+ T cells via indirect recognition of alloantigen is associated with a dominant Th2 response. Eur J Immunol. 35:843–51. DOI:
10.1002/eji.200425685. PMID:
15714582.
82. Plenter RJ, Grazia TJ, Doan AN, Gill RG, Pietra BA. 2012; CD4 T cells mediate cardiac xenograft rejection via host MHC Class II. J Heart Lung Transplant. 31:1018–24. DOI:
10.1016/j.healun.2012.05.018. PMID:
22789136. PMCID:
PMC3418866.
83. Ma CS, Deenick EK, Batten M, Tangye SG. 2012; The origins, function, and regulation of T follicular helper cells. J Exp Med. 209:1241–53. DOI:
10.1084/jem.20120994. PMID:
22753927. PMCID:
PMC3405510.
84. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, et al. 2010; Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 143:592–605. DOI:
10.1016/j.cell.2010.10.032. PMID:
21074050. PMCID:
PMC3035939.
85. Kurosaki T, Kometani K, Ise W. 2015; Memory B cells. Nat Rev Immunol. 15:149–59. DOI:
10.1038/nri3802. PMID:
25677494.
86. Steele DJ, Laufer TM, Smiley ST, Ando Y, Grusby MJ, Glimcher LH, et al. 1996; Two levels of help for B cell alloantibody production. J Exp Med. 183:699–703. DOI:
10.1084/jem.183.2.699. PMID:
8627185. PMCID:
PMC2192460.
87. Irei T, Ohdan H, Zhou W, Ishiyama K, Tanaka Y, Ide K, et al. 2007; The persistent elimination of B cells responding to blood group A carbohydrates by synthetic group A carbohydrates and B-1 cell differentiation blockade: novel concept in preventing antibody-mediated rejection in ABO-incompatible transplantation. Blood. 110:4567–75. DOI:
10.1182/blood-2007-04-082719. PMID:
17766679.
88. Zhou W, Ohdan H, Tanaka Y, Hara H, Tokita D, Onoe T, et al. 2003; NOD/SCID mice engrafted with human peripheral blood lymphocytes can be a model for investigating B cells responding to blood group A carbohydrate determinant. Transpl Immunol. 12:9–18. DOI:
10.1016/S0966-3274(03)00060-1. PMID:
14551028.
89. Tazawa H, Irei T, Tanaka Y, Igarashi Y, Tashiro H, Ohdan H. 2013; Blockade of invariant TCR-CD1d interaction specifically inhibits antibody production against blood group A carbohydrates. Blood. 122:2582–90. DOI:
10.1182/blood-2012-02-407452. PMID:
23943651. PMCID:
PMC3795459.
90. Xu Y, Lee JG, Yan JJ, Ryu JH, Xu S, Yang J. 2020; Human B1 cells are the main blood group A-specific B cells that have a moderate correlation with anti-A antibody titer. Ann Lab Med. 40:48–56. DOI:
10.3343/alm.2020.40.1.48. PMID:
31432639. PMCID:
PMC6713656.
91. Moon H, Park C, Lee JG, Shin SH, Lee JH, Kho I, et al. 2015; Early development in the peritoneal cavity of CD49dhigh Th1 memory phenotype CD4+ T cells with enhanced B cell helper activity. J Immunol. 195:564–75. DOI:
10.4049/jimmunol.1401661. PMID:
26056253.
92. Broz P, Monack DM. 2013; Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 13:551–65. DOI:
10.1038/nri3479. PMID:
23846113.
93. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997; A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388:394–7. DOI:
10.1038/41131. PMID:
9237759.
94. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. 1998; Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282:2085–8. DOI:
10.1126/science.282.5396.2085. PMID:
9851930.
95. Goldstein DR, Tesar BM, Akira S, Lakkis FG. 2003; Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest. 111:1571–8. DOI:
10.1172/JCI200317573. PMID:
12750407. PMCID:
PMC155048.
96. McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J. 2006; Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol. 36:1994–2002. DOI:
10.1002/eji.200636249. PMID:
16874736.
97. Tesar BM, Zhang J, Li Q, Goldstein DR. 2004; TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a Toll-like receptor signal adaptor protein. Am J Transplant. 4:1429–39. DOI:
10.1111/j.1600-6143.2004.00544.x. PMID:
15307830.
98. Hutton MJ, Westwell-Roper C, Soukhatcheva G, Plesner A, Dutz JP, Verchere CB. 2009; Islet allograft rejection is independent of Toll-like receptor signaling in mice. Transplantation. 88:1075–80. DOI:
10.1097/TP.0b013e3181bd3fe2. PMID:
19898202.
99. Barclay AN, Van den Berg TK. 2014; The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 32:25–50. DOI:
10.1146/annurev-immunol-032713-120142. PMID:
24215318.
100. Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, et al. 2017; Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol. 2:eaam6202. DOI:
10.1126/sciimmunol.aam6202. PMID:
28783664. PMCID:
PMC5653256.
101. Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y, Tokuyama T, et al. 2013; Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood. 121:1316–25. DOI:
10.1182/blood-2012-06-440354. PMID:
23293079.
102. Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, et al. 2020; PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science. 368:1122–7. DOI:
10.1126/science.aax4040. PMID:
32381589. PMCID:
PMC7379379.
103. Wong AS, Mortin-Toth S, Sung M, Canty AJ, Gulban O, Greaves DR, et al. 2014; Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse. J Immunol. 193:4833–44. DOI:
10.4049/jimmunol.1401984. PMID:
25305319.
104. Kubagawa H, Chen CC, Ho LH, Shimada TS, Gartland L, Mashburn C, et al. 1999; Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med. 189:309–18. DOI:
10.1084/jem.189.2.309. PMID:
9892613. PMCID:
PMC2192985.
105. Liu W, Xiao X, Demirci G, Madsen J, Li XC. 2012; Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol. 188:2703–11. DOI:
10.4049/jimmunol.1102997. PMID:
22327074. PMCID:
PMC3298083.
106. Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. 2022; Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 101:692–710. DOI:
10.1016/j.kint.2021.11.029. PMID:
34915041.
107. Hughes AD, Zhao D, Dai H, Abou-Daya KI, Tieu R, Rammal R, et al. 2020; Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts. J Clin Invest. 130:287–94. DOI:
10.1172/JCI125773. PMID:
31763998. PMCID:
PMC6934226.
108. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. 2017; The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 214:1913–23. DOI:
10.1084/jem.20170355. PMID:
28606987. PMCID:
PMC5502436.
109. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. 2013; Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 38:79–91. DOI:
10.1016/j.immuni.2012.12.001. PMID:
23273845. PMCID:
PMC3908543.
110. Zhao D, Abou-Daya KI, Dai H, Oberbarnscheidt MH, Li XC, Lakkis FG. 2020; Innate allorecognition and memory in transplantation. Front Immunol. 11:918. DOI:
10.3389/fimmu.2020.00918. PMID:
32547540. PMCID:
PMC7270276.
111. Espinosa JR, Samy KP, Kirk AD. 2016; Memory T cells in organ transplantation: progress and challenges. Nat Rev Nephrol. 12:339–47. DOI:
10.1038/nrneph.2016.9. PMID:
26923209. PMCID:
PMC5341793.
112. Ford ML, Larsen CP. 2010; Overcoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Curr Opin Organ Transplant. 15:405–10. DOI:
10.1097/MOT.0b013e32833b7916. PMID:
20616729. PMCID:
PMC4642449.
113. Macedo C, Orkis EA, Popescu I, Elinoff BD, Zeevi A, Shapiro R, et al. 2009; Contribution of naïve and memory T-cell populations to the human alloimmune response. Am J Transplant. 9:2057–66. DOI:
10.1111/j.1600-6143.2009.02742.x. PMID:
19624567.
114. Uehara S, Chase CM, Kitchens WH, Rose HS, Colvin RB, Russell PS, et al. 2005; NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J Immunol. 175:3424–30. DOI:
10.4049/jimmunol.175.5.3424. PMID:
16116237.
115. Maier S, Tertilt C, Chambron N, Gerauer K, Hüser N, Heidecke CD, et al. 2001; Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med. 7:557–62. DOI:
10.1038/87880. PMID:
11329056.
116. Thielens A, Vivier E, Romagné F. 2012; NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol. 24:239–45. DOI:
10.1016/j.coi.2012.01.001. PMID:
22264929.
117. Horowitz A, Djaoud Z, Nemat-Gorgani N, Blokhuis J, Hilton HG, Béziat V, et al. 2016; Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol. 1:eaag1672. DOI:
10.1126/sciimmunol.aag1672. PMID:
27868107. PMCID:
PMC5110269.
118. Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, et al. 1998; HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 391:795–9. DOI:
10.1038/35869. PMID:
9486650.
119. Wei XH, Orr HT. 1990; Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Hum Immunol. 29:131–42. DOI:
10.1016/0198-8859(90)90076-2. PMID:
2249951.
120. Coupel S, Moreau A, Hamidou M, Horejsi V, Soulillou JP, Charreau B. 2007; Expression and release of soluble HLA-E is an immunoregulatory feature of endothelial cell activation. Blood. 109:2806–14. DOI:
10.1182/blood-2006-06-030213. PMID:
17179229.
121. Braud VM, Allan DS, Wilson D, McMichael AJ. 1998; TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol. 8:1–10. DOI:
10.1016/S0960-9822(98)70014-4. PMID:
9427624.
122. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. 1998; HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol. 160:4951–60. DOI:
10.4049/jimmunol.160.10.4951. PMID:
9590243.
123. Michaëlsson J, Teixeira de Matos C, Achour A, Lanier LL, Kärre K, Söderström K. 2002; A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med. 196:1403–14. DOI:
10.1084/jem.20020797. PMID:
12461076. PMCID:
PMC2194258.
124. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. 2011; Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–9. DOI:
10.1126/science.1198687. PMID:
21212348. PMCID:
PMC3089969.
125. Chauveau A, Tonnerre P, Pabois A, Gavlovsky PJ, Chatelais M, Coupel S, et al. 2014; Endothelial cell activation and proliferation modulate NKG2D activity by regulating MICA expression and shedding. J Innate Immun. 6:89–104. DOI:
10.1159/000351605. PMID:
23860405. PMCID:
PMC6784110.
126. Tonnerre P, Gérard N, Chatelais M, Poli C, Allard S, Cury S, et al. 2013; MICA variant promotes allosensitization after kidney transplantation. J Am Soc Nephrol. 24:954–66. DOI:
10.1681/ASN.2012080814. PMID:
23539759. PMCID:
PMC3665393.
127. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. 1998; NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 187:2065–72. DOI:
10.1084/jem.187.12.2065. PMID:
9625766. PMCID:
PMC2212362.
128. al-Daccak R, Wang FQ, Theophille D, Lethielleux P, Colombani J, Loiseau P. 1991; Gene polymorphism of HLA-DPB1 and DPA1 loci in caucasoid population: frequencies and DPB1-DPA1 associations. Hum Immunol. 31:277–85. DOI:
10.1016/0198-8859(91)90100-N. PMID:
1680839.
129. Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, et al. 2019; A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol. 20:1129–37. DOI:
10.1038/s41590-019-0448-4. PMID:
31358998. PMCID:
PMC8370669.
130. Muczynski KA, Ekle DM, Coder DM, Anderson SK. 2003; Normal human kidney HLA-DR-expressing renal microvascular endothelial cells: characterization, isolation, and regulation of MHC class II expression. J Am Soc Nephrol. 14:1336–48. DOI:
10.1097/01.ASN.0000061778.08085.9F. PMID:
12707403.
131. Thaunat O, Hanf W, Dubois V, McGregor B, Perrat G, Chauvet C, et al. 2009; Chronic humoral rejection mediated by anti-HLA-DP alloantibodies: insights into the role of epitope sharing in donor-specific and non-donor specific alloantibodies generation. Transpl Immunol. 20:209–11. DOI:
10.1016/j.trim.2008.12.006. PMID:
19166936.
132. Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B. 1998; Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity. 8:157–66. DOI:
10.1016/S1074-7613(00)80468-9. PMID:
9491997.
133. O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH. 2006; T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol. 7:507–16. DOI:
10.1038/ni1332. PMID:
16617337.
134. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. 2012; Cytokine activation induces human memory-like NK cells. Blood. 120:4751–60. DOI:
10.1182/blood-2012-04-419283. PMID:
22983442. PMCID:
PMC3520618.
135. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. 2016; Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 8:357ra123. DOI:
10.1126/scitranslmed.aaf2341. PMID:
27655849. PMCID:
PMC5436500.
136. Keppel MP, Yang L, Cooper MA. 2013; Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J Immunol. 190:4754–62. DOI:
10.4049/jimmunol.1201742. PMID:
23530145. PMCID:
PMC3633638.
137. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM. 2001; Specific and nonspecific NK cell activation during virus infection. Nat Immunol. 2:951–6. DOI:
10.1038/ni714. PMID:
11550009.
139. Nabekura T, Lanier LL. 2014; Antigen-specific expansion and differentiation of natural killer cells by alloantigen stimulation. J Exp Med. 211:2455–65. DOI:
10.1084/jem.20140798. PMID:
25366966. PMCID:
PMC4235640.
140. Koenig A, Chen CC, Marçais A, Barba T, Mathias V, Sicard A, et al. 2019; Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat Commun. 10:5350. DOI:
10.1038/s41467-019-13113-5. PMID:
31767837. PMCID:
PMC6877588.
141. Koenig A, Mezaache S, Callemeyn J, Barba T, Mathias V, Sicard A, et al. 2021; Missing self-induced activation of NK cells combines with non-complement-fixing donor-specific antibodies to accelerate kidney transplant loss in chronic antibody-mediated rejection. J Am Soc Nephrol. 32:479–94. DOI:
10.1681/ASN.2020040433. PMID:
33239394. PMCID:
PMC8054908.
142. Callemeyn J, Senev A, Coemans M, Lerut E, Sprangers B, Kuypers D, et al. 2021; Missing self-induced microvascular rejection of kidney allografts: a population-based study. J Am Soc Nephrol. 32:2070–82. DOI:
10.1681/ASN.2020111558. PMID:
34301794. PMCID:
PMC8455279.
143. van Bergen J, Thompson A, Haasnoot GW, Roodnat JI, de Fijter JW, Claas FH, et al. 2011; KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am J Transplant. 11:1959–64. DOI:
10.1111/j.1600-6143.2011.03621.x. PMID:
21714849.
144. Zhang Y, Yan AW, Boelen L, Hadcocks L, Salam A, Gispert DP, et al. 2023; KIR-HLA interactions extend human CD8+ T cell lifespan in vivo. J Clin Invest. 133:e169496. DOI:
10.1172/JCI169496. PMID:
37071474. PMCID:
PMC10266773.
145. Tasca P, van den Berg BM, Rabelink TJ, Wang G, Heijs B, van Kooten C, et al. 2024; Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol. 20:755–66. DOI:
10.1038/s41581-024-00861-x. PMID:
38965417.
146. Lamarthée B, Callemeyn J, Van Herck Y, Antoranz A, Anglicheau D, Boada P, et al. 2023; Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat Commun. 14:4359. DOI:
10.1038/s41467-023-39859-7. PMID:
37468466. PMCID:
PMC10356785.
147. Lucas PJ, Shearer GM, Neudorf S, Gress RE. 1990; The human antimurine xenogeneic cytotoxic response. I. Dependence on responder antigen-presenting cells. J Immunol. 144:4548–54. DOI:
10.4049/jimmunol.144.12.4548. PMID:
1972159.
148. Lucas PJ, Bare CV, Gress RE. 1995; The human anti-murine xenogeneic cytotoxic response. II. Activated murine antigen-presenting cells directly stimulate human T helper cells. J Immunol. 154:3761–70. DOI:
10.4049/jimmunol.154.8.3761. PMID:
7706717.
149. Yamada K, Sachs DH, DerSimonian H. 1995; Human anti-porcine xenogeneic T cell response: evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol. 155:5249–56. DOI:
10.4049/jimmunol.155.11.5249. PMID:
7594537.
150. Dorling A, Lombardi G, Binns R, Lechler RI. 1996; Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol. 26:1378–87. DOI:
10.1002/eji.1830260630. PMID:
8647220.
152. Mason D. 1998; A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 19:395–404. DOI:
10.1016/S0167-5699(98)01299-7. PMID:
9745202.
153. Murray AG, Khodadoust MM, Pober JS, Bothwell AL. 1994; Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity. 1:57–63. DOI:
10.1016/1074-7613(94)90009-4. PMID:
7889399.
154. Vallée I, Watier H, Thibault G, Salmon H, Gruel Y, Lebranchu Y, et al. 1995; Evidence of noninvolvement of swine MHC class II in the in vitro proliferative response of human lymphocytes to porcine endothelial cells. Transplantation. 59:897–901. DOI:
10.1097/00007890-199503270-00017. PMID:
7701587.
155. Bravery CA, Batten P, Yacoub MH, Rose ML. 1995; Direct recognition of SLA- and HLA-like class II antigens on porcine endothelium by human T cells results in T cell activation and release of interleukin-2. Transplantation. 60:1024–33. DOI:
10.1097/00007890-199511000-00025. PMID:
7491676.
156. Rollins SA, Kennedy SP, Chodera AJ, Elliott EA, Zavoico GB, Matis LA. 1994; Evidence that activation of human T cells by porcine endothelium involves direct recognition of porcine SLA and costimulation by porcine ligands for LFA-1 and CD2. Transplantation. 57:1709–16. DOI:
10.1097/00007890-199457120-00004. PMID:
7912457.
157. Candinas D, Belliveau S, Koyamada N, Miyatake T, Hechenleitner P, Mark W, et al. 1996; T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation. 62:1920–7. DOI:
10.1097/00007890-199612270-00042. PMID:
8990388.
158. Fox A, Mountford J, Braakhuis A, Harrison LC. 2001; Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol. 166:2133–40. DOI:
10.4049/jimmunol.166.3.2133. PMID:
11160265.
159. Basker M, Alwayn IP, Buhler L, Harper D, Abraham S, Kruger Gray H, et al. 2001; Clearance of mobilized porcine peripheral blood progenitor cells is delayed by depletion of the phagocytic reticuloendothelial system in baboons. Transplantation. 72:1278–85. DOI:
10.1097/00007890-200110150-00017. PMID:
11602856.
161. Peterson MD, Jin R, Hyduk S, Duchesneau P, Cybulsky MI, Waddell TK. 2005; Monocyte adhesion to xenogeneic endothelium during laminar flow is dependent on alpha-Gal-mediated monocyte activation. J Immunol. 174:8072–81. DOI:
10.4049/jimmunol.174.12.8072. PMID:
15944315.
162. Xu XC, Goodman J, Sasaki H, Lowell J, Mohanakumar T. 2002; Activation of natural killer cells and macrophages by porcine endothelial cells augments specific T-cell xenoresponse. Am J Transplant. 2:314–22. DOI:
10.1034/j.1600-6143.2002.20405.x. PMID:
12118852.
163. Jin R, Greenwald A, Peterson MD, Waddell TK. 2006; Human monocytes recognize porcine endothelium via the interaction of galectin 3 and alpha-GAL. J Immunol. 177:1289–95. DOI:
10.4049/jimmunol.177.2.1289. PMID:
16818789.
164. Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, et al. 1998; Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol. 161:1853–9. DOI:
10.4049/jimmunol.161.4.1853. PMID:
9712053.
165. Itoh T, Hata Y, Nishinakamura H, Kumano K, Takahashi H, Kodama S. 2016; Islet-derived damage-associated molecular pattern molecule contributes to immune responses following microencapsulated neonatal porcine islet xenotransplantation in mice. Xenotransplantation. 23:393–404. DOI:
10.1111/xen.12253. PMID:
27422454.
166. Schneider MK, Forte P, Seebach JD. 2001; Adhesive interactions between human NK cells and porcine endothelial cells. Scand J Immunol. 54:70–5. DOI:
10.1046/j.1365-3083.2001.00966.x. PMID:
11439150.
167. Matter-Reissmann UB, Forte P, Schneider MK, Filgueira L, Groscurth P, Seebach JD. 2002; Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression. Xenotransplantation. 9:325–37. DOI:
10.1034/j.1399-3089.2002.01074.x. PMID:
12199864.
168. Resch T, Fabritius C, Ebner S, Ritschl P, Kotsch K. 2015; The role of natural killer cells in humoral rejection. Transplantation. 99:1335–40. DOI:
10.1097/TP.0000000000000757. PMID:
26018352.
170. Lilienfeld BG, Garcia-Borges C, Crew MD, Seebach JD. 2006; Porcine UL16-binding protein 1 expressed on the surface of endothelial cells triggers human NK cytotoxicity through NKG2D. J Immunol. 177:2146–52. DOI:
10.4049/jimmunol.177.4.2146. PMID:
16887974.
172. Puga Yung G, Schneider MK, Seebach JD. 2017; The role of NK cells in pig-to-human xenotransplantation. J Immunol Res. 2017:4627384. DOI:
10.1155/2017/4627384. PMID:
29410970. PMCID:
PMC5749293.