Clin Transplant Res.  2024 Dec;38(4):273-293. 10.4285/ctr.24.0056.

Mechanisms of allorecognition and xenorecognition in transplantation

Affiliations
  • 1The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
  • 2Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Abstract

Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells. Innate immune cells, such as dendritic cells, identify pathogen- or danger-associated molecular patterns through pattern recognition receptors, thereby facilitating effective antigen presentation to T cells. Recent studies have shown that innate immune cells, including macrophages and NK cells, can recognize allogeneic or xenogeneic antigens using immune receptors like CD47 or activating NK receptors, instead of pattern recognition receptors. Additionally, macrophages and NK cells are capable of exhibiting memory responses to alloantigens, although these responses are shorter than those of adaptive memory. T cells also recognize xenoantigens through either direct or indirect presentation. Notably, macrophages and NK cells can directly recognize xenoantigens via surface immune receptors in an antibody-independent manner, or they can be activated in an antibody-dependent manner. Advances in our understanding of the recognition mechanisms of adaptive and innate immunity against allogeneic and xenogeneic antigens may improve our understanding of graft rejection.

Keyword

Alloimmunity; Nonself recognition; Transplantation rejection; Transplantation; Xenotransplantation

Figure

  • Fig. 1 Various mechanisms of allorecognition of T cells. Mature APCs activate CD4+ and CD8+ T cells by presenting donor-derived peptides via MHC molecules through three pathways: direct, indirect, and semidirect. (A) In the direct pathway, recipient T cells recognize donor MHC-peptide complexes on donor APCs, and CD8+ T cells are assisted by CD4+ T cells. (B) In the indirect pathway, CD4+ T cells interact with recipient MHCs presenting peptides from processed donor MHCs. Meanwhile, ⓐ CD8+ T cells interact with recipient APCs via cross-presentation (three-cell model) or ⓑ donor APCs (four-cell model) and receive assistance from CD4+ T cells. (C) The semidirect pathway involves CD8+ T cells recognizing intact donor MHC class I on recipient APCs and receiving assistance from CD4+ T cells that recognize recipient MHC class II with processed peptides on recipient APCs. APC, antigen-presenting cell; MHC, major histocompatibility complex; TCR, T cell receptor; IL, interleukin.

  • Fig. 2 Allorecognition of B cells and B–T interaction. Naive B cells exit the circulation, enter B cell follicles in the secondary lymphoid organ and survey antigens in the environment. (1) Antigens are encountered on B cells through the B cell receptor, and the antigens are (2) internalized, and then (3) processed and presented to T cell receptors on T cells at the T–B cell border, driving naive B cells to proliferate and differentiate into plasma cells or memory B cells. Ig, immunoglobulin; MHC, major histocompatibility complex.

  • Fig. 3 Primary and secondary allorecognition of macrophages. (A) Mismatches of MHC I and SIRPα between donor and recipient and expressions of both PIR-A and CD47 molecules on recipient monocytes are required for establishing allospecific monocyte memory. (B) Recipient monocytes are primed by increased binding strength of CD47 with allogeneic SIRPα. Primed myeloid cells engage with mismatched MHC class I molecules through PIR-A (mouse) or LILR (human), leading to proliferation and increased responsiveness. SIRPα, signal regulatory protein alpha; PIR-A, paired immunoglobulin-like receptor-A; MHC, major histocompatibility complex; LILR, leukocyte immunoglobulin-like receptor; HLA, human leukocyte antigen.

  • Fig. 4 Allorecognition of NK cells via missing-self. Recipient NK cells are suppressed by the binding of NK inhibitory receptor, such as KIR, to self HLA class I on the membrane of recipient cells. In contrast, recipient NK cells are activated by binding of NK activating receptor to activating ligands on donor cells in the absence of self HLA class I, so-called missing-self mechanism. NK cell, natural killer cell; KIR, killer cell Ig-like receptor; HLA, human leukocyte antigen.

  • Fig. 5 Xenorecognition of T cells. (A) Direct xenorecognition. Xenogeneic APCs present xenogeneic peptides to the recipient CD4+ T cells via the xenogeneic MHC class II molecules. This led to the production of IL-2 by the CD4+ T cells. IL-2 acts on CD8+ T cells, which themselves recognize xenogeneic peptides presented via the MHC class I on the xenogeneic APC. (B) Indirect xenorecognition. Shed xenogeneic antigens from the xenogeneic cell are taken up by the recipient APC to be presented to the CD4+ T cell via MHC class II molecule, which results in generation of the effector functions. IL-2, interleukin 2; APC, antigen-presenting cell; MHC, major histocompatibility complex; TCR, T cell receptor.

  • Fig. 6 Antibody-dependent and -independent xenorecognition of macrophages. Monocytes or macrophages can trigger the destruction of porcine cells through two immune mechanisms. In the antibody-dependent process, macrophages are activated via FcR-mediated signaling during their interaction with cells coated by xenoreactive antibodies. In contrast, in the antibody-independent process, monocytes are activated through direct recognition of xenogeneic antigens, such as α-Gal, via cell surface receptor, such as galectin-3. Molecular incompatibility of myeloid inhibitory molecules, such as CD47 and CD200, between pigs and humans contributes to weak negative feedback on macrophage activation and leads to overactivation of macrophages after xenotransplantation. α-Gal, α-galactosidase; FcR, Fc receptor; DAMP, danger-associated molecular pattern; TLR, Toll-like receptor; SIRPα, signal regulatory protein alpha.

  • Fig. 7 Antibody-dependent and -independent xenorecognition of NK cells. (A) NK cells can facilitate the destruction of porcine cells through antibody-dependent cytotoxicity and (B) antibody-independent direct cytotoxicity. In the antibody-dependent cellular cytotoxicity process, NK cells interact with the Fc region of antibody complexes via FcRs, leading to the release of cytotoxic granules. In the antibody-independent, direct cytotoxicity, the inhibitory receptors on human NK cells, including KIR, ILT2, and CD94/NKG2A, fail to effectively recognize SLA-I and the pig HLA-E counterpart, which blocks the inhibitory signals that would typically suppress NK cell activity. Additionally, the engagement of pULBP1-NKG2D and pCD58-CD2 signaling pathways, along with an unknown ligand interacting with NKp44, can induce the direct cytotoxic activity of NK cells. NK, natural killer; FcR, Fc receptor; α-Gal, α-galactosidase; KIR, killer cell immunoglobulin-like receptor; SLA, swine leukocyte antigen; HLA, human leukocyte antigen.


Reference

1. Dausset J. 1981; The major histocompatibility complex in man. Science. 213:1469–74. DOI: 10.1126/science.6792704. PMID: 6792704.
2. Snell GD. 1981; Studies in histocompatibility. Science. 213:172–8. DOI: 10.1126/science.7017931. PMID: 7017931.
3. Felix NJ, Donermeyer DL, Horvath S, Walters JJ, Gross ML, Suri A, et al. 2007; Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol. 8:388–97. DOI: 10.1038/ni1446. PMID: 17322886.
4. Matzinger P. 1994; Tolerance, danger, and the extended family. Annu Rev Immunol. 12:991–1045. DOI: 10.1146/annurev.iy.12.040194.005015. PMID: 8011301.
5. Oberbarnscheidt MH, Zecher D, Lakkis FG. 2011; The innate immune system in transplantation. Semin Immunol. 23:264–72. DOI: 10.1016/j.smim.2011.06.006. PMID: 21723740. PMCID: PMC3535269.
6. Rosengarten RD, Nicotra ML. 2011; Model systems of invertebrate allorecognition. Curr Biol. 21:R82–92. DOI: 10.1016/j.cub.2010.11.061. PMID: 21256442.
7. Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, et al. 2009; A hypervariable invertebrate allodeterminant. Curr Biol. 19:583–9. DOI: 10.1016/j.cub.2009.02.040. PMID: 19303297. PMCID: PMC2681180.
8. Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA, Grimwood J, et al. 2010; Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol. 20:1122–7. DOI: 10.1016/j.cub.2010.04.050. PMID: 20537535. PMCID: PMC2921677.
9. Huene AL, Sanders SM, Ma Z, Nguyen AD, Koren S, Michaca MH, et al. 2022; A family of unusual immunoglobulin superfamily genes in an invertebrate histocompatibility complex. Proc Natl Acad Sci U S A. 119:e2207374119. DOI: 10.1073/pnas.2207374119. PMID: 36161920. PMCID: PMC9546547.
10. Nicotra ML. 2019; Invertebrate allorecognition. Curr Biol. 29:R463–7. DOI: 10.1016/j.cub.2019.03.039. PMID: 31163159.
11. Krensky AM, Clayberger C. 1993; The nature of allorecognition. Curr Opin Nephrol Hypertens. 2:898–903. DOI: 10.1097/00041552-199311000-00007. PMID: 7922230.
12. Sherman LA, Chattopadhyay S. 1993; The molecular basis of allorecognition. Annu Rev Immunol. 11:385–402. DOI: 10.1146/annurev.iy.11.040193.002125. PMID: 8476567.
13. Lechler RI, Lombardi G, Batchelor JR, Reinsmoen N, Bach FH. 1990; The molecular basis of alloreactivity. Immunol Today. 11:83–8. DOI: 10.1016/0167-5699(90)90033-6. PMID: 2186745.
14. Benichou G, Takizawa PA, Olson CA, McMillan M, Sercarz EE. 1992; Donor major histocompatibility complex (MHC) peptides are presented by recipient MHC molecules during graft rejection. J Exp Med. 175:305–8. DOI: 10.1084/jem.175.1.305. PMID: 1730925. PMCID: PMC2119070.
15. Fangmann J, Dalchau R, Fabre JW. 1992; Rejection of skin allografts by indirect allorecognition of donor class I major histocompatibility complex peptides. J Exp Med. 175:1521–9. DOI: 10.1084/jem.175.6.1521. PMID: 1588278. PMCID: PMC2119238.
16. Auchincloss H Jr, Sultan H. 1996; Antigen processing and presentation in transplantation. Curr Opin Immunol. 8:681–7. DOI: 10.1016/S0952-7915(96)80086-0. PMID: 8902394.
17. Liu Z, Sun YK, Xi YP, Maffei A, Reed E, Harris P, et al. 1993; Contribution of direct and indirect recognition pathways to T cell alloreactivity. J Exp Med. 177:1643–50. DOI: 10.1084/jem.177.6.1643. PMID: 7684431. PMCID: PMC2191044.
18. Harper SJ, Ali JM, Wlodek E, Negus MC, Harper IG, Chhabra M, et al. 2015; CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Natl Acad Sci U S A. 112:12788–93. DOI: 10.1073/pnas.1513533112. PMID: 26420874. PMCID: PMC4611606.
19. Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, et al. 2016; Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 1:aaf8759. DOI: 10.1126/sciimmunol.aaf8759. PMID: 27942611. PMCID: PMC5142759.
20. Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, et al. 2016; Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 126:2805–20. DOI: 10.1172/JCI84577. PMID: 27348586. PMCID: PMC4966303.
21. Brown K, Sacks SH, Wong W. 2011; Coexpression of donor peptide/recipient MHC complex and intact donor MHC: evidence for a link between the direct and indirect pathways. Am J Transplant. 11:826–31. DOI: 10.1111/j.1600-6143.2011.03437.x. PMID: 21401861.
22. Smyth LA, Afzali B, Tsang J, Lombardi G, Lechler RI. 2007; Intercellular transfer of MHC and immunological molecules: molecular mechanisms and biological significance. Am J Transplant. 7:1442–9. DOI: 10.1111/j.1600-6143.2007.01816.x. PMID: 17511673. PMCID: PMC3815510.
23. Goulmy E. 1996; Human minor histocompatibility antigens. Curr Opin Immunol. 8:75–81. DOI: 10.1016/S0952-7915(96)80108-7. PMID: 8729449.
24. Billingham RE. 1971; The passenger cell concept in transplantation immunology. Cell Immunol. 2:1–12. DOI: 10.1016/0008-8749(71)90022-0. PMID: 4399153.
25. Steinmuller D. 1980; Passenger leukocytes and the immunogenicity of skin allografts. J Invest Dermatol. 75:107–15. DOI: 10.1111/1523-1747.ep12521331. PMID: 6993580.
26. Matzinger P, Bevan MJ. 1977; Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 29:1–5. DOI: 10.1016/0008-8749(77)90269-6. PMID: 300293.
27. Lombardi G, Sidhu S, Batchelor JR, Lechler RI. 1989; Allorecognition of DR1 by T cells from a DR4/DRw13 responder mimics self-restricted recognition of endogenous peptides. Proc Natl Acad Sci U S A. 86:4190–4. DOI: 10.1073/pnas.86.11.4190. PMID: 2657745. PMCID: PMC287416.
28. Lechler R, Lombardi G. 1990; The structural basis of alloreactivity. Immunol Res. 9:135–46. DOI: 10.1007/BF02918204. PMID: 2189936.
29. Bevan MJ. 1984; High determinant density may explain the phenomenon of alloreactivity. Immunol Today. 5:128–30. DOI: 10.1016/0167-5699(84)90233-0. PMID: 25289554.
30. Rogers NJ, Lechler RI. 2001; Allorecognition. Am J Transplant. 1:97–102. DOI: 10.1034/j.1600-6143.2001.10201.x.
31. Burrows SR, Silins SL, Khanna R, Burrows JM, Rischmueller M, McCluskey J, et al. 1997; Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur J Immunol. 27:1726–36. DOI: 10.1002/eji.1830270720. PMID: 9247584.
32. Burrows SR, Khanna R, Burrows JM, Moss DJ. 1994; An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J Exp Med. 179:1155–61. DOI: 10.1084/jem.179.4.1155. PMID: 7511682. PMCID: PMC2191444.
33. Brehm MA, Markees TG, Daniels KA, Greiner DL, Rossini AA, Welsh RM. 2003; Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J Immunol. 170:4077–86. DOI: 10.4049/jimmunol.170.8.4077. PMID: 12682237.
34. Hennecke J, Wiley DC. 2001; T cell receptor-MHC interactions up close. Cell. 104:1–4. DOI: 10.1016/S0092-8674(01)00185-4. PMID: 11163234.
35. Rudolph MG, Wilson IA. 2002; The specificity of TCR/pMHC interaction. Curr Opin Immunol. 14:52–65. DOI: 10.1016/S0952-7915(01)00298-9. PMID: 11790533.
36. Reiser JB, Darnault C, Guimezanes A, Grégoire C, Mosser T, Schmitt-Verhulst AM, et al. 2000; Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat Immunol. 1:291–7. DOI: 10.1038/79728. PMID: 11017099.
37. Luz JG, Huang M, Garcia KC, Rudolph MG, Apostolopoulos V, Teyton L, et al. 2002; Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) interactions. J Exp Med. 195:1175–86. DOI: 10.1084/jem.20011644. PMID: 11994422. PMCID: PMC2193710.
38. Murphy B, Auchincloss H Jr, Carpenter CB, Sayegh MH. 1996; T cell recognition of xeno-MHC peptides during concordant xenograft rejection. Transplantation. 61:1133–7. DOI: 10.1097/00007890-199604270-00001. PMID: 8610405.
39. Buhler L, Illigens BM, Nadazdin O, Tena A, Lee S, Sachs DH, et al. 2016; Persistence of indirect but not direct T cell xenoresponses in baboon recipients of pig cell and organ transplants. Am J Transplant. 16:1917–22. DOI: 10.1111/ajt.13695. PMID: 26718119. PMCID: PMC4874842.
40. Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. 2008; T-cell allorecognition: a case of mistaken identity or déjà vu? Trends Immunol. 29:220–6. DOI: 10.1016/j.it.2008.02.005. PMID: 18378495.
41. D'Orsogna LJ, Nguyen TH, Claas FH, Witt C, Mifsud NA. 2013; Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications. Tissue Antigens. 81:399–407. DOI: 10.1111/tan.12115. PMID: 23646948.
42. Morris GP, Ni PP, Allen PM. 2011; Alloreactivity is limited by the endogenous peptide repertoire. Proc Natl Acad Sci U S A. 108:3695–700. DOI: 10.1073/pnas.1017015108. PMID: 21321209. PMCID: PMC3048116.
43. Amir AL, Hagedoorn RS, van Luxemburg-Heijs SA, Marijt EW, Kruisselbrink AB, Frederik Falkenburg JH, et al. 2012; Identification of a coordinated CD8 and CD4 T cell response directed against mismatched HLA Class I causing severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 18:210–9. DOI: 10.1016/j.bbmt.2011.10.018. PMID: 22015995.
44. Son ET, Faridi P, Paul-Heng M, Leong ML, English K, Ramarathinam SH, et al. 2021; The self-peptide repertoire plays a critical role in transplant tolerance induction. J Clin Invest. 131:e146771. DOI: 10.1172/JCI146771. PMID: 34428180. PMCID: PMC8553557.
45. Lechler RI, Batchelor JR. 1982; Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med. 155:31–41. DOI: 10.1084/jem.155.1.31. PMID: 7033437. PMCID: PMC2186574.
46. Liu Z, Braunstein NS, Suciu-Foca N. 1992; T cell recognition of allopeptides in context of syngeneic MHC. J Immunol. 148:35–40. DOI: 10.4049/jimmunol.148.1.35. PMID: 1530797.
47. Fangmann J, Dalchau R, Sawyer GJ, Priestley CA, Fabre JW. 1992; T cell recognition of donor major histocompatibility complex class I peptides during allograft rejection. Eur J Immunol. 22:1525–30. DOI: 10.1002/eji.1830220627. PMID: 1601039.
48. Liu Z, Sun YK, Xi YP, Hong B, Harris PE, Reed EF, et al. 1993; Limited usage of T cell receptor V beta genes by allopeptide-specific T cells. J Immunol. 150(8 Pt 1):3180–6. DOI: 10.4049/jimmunol.150.8.3180. PMID: 8468463.
49. Benichou G, Fedoseyeva E, Lehmann PV, Olson CA, Geysen HM, McMillan M, et al. 1994; Limited T cell response to donor MHC peptides during allograft rejection. Implications for selective immune therapy in transplantation. J Immunol. 153:938–45. DOI: 10.4049/jimmunol.153.3.938. PMID: 7517977.
50. Celli S, Albert ML, Bousso P. 2011; Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med. 17:744–9. DOI: 10.1038/nm.2376. PMID: 21572426.
51. Marino J, Paster J, Benichou G. 2016; Allorecognition by T lymphocytes and allograft rejection. Front Immunol. 7:582. DOI: 10.3389/fimmu.2016.00582. PMID: 28018349. PMCID: PMC5155009.
52. Arnold D, Faath S, Rammensee H, Schild H. 1995; Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med. 182:885–9. DOI: 10.1084/jem.182.3.885. PMID: 7650492. PMCID: PMC2192175.
53. Carbone FR, Bevan MJ. 1990; Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med. 171:377–87. DOI: 10.1084/jem.171.2.377. PMID: 2137512. PMCID: PMC2187713.
54. Heath WR, Carbone FR. 1999; Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol. 11:314–8. DOI: 10.1016/S0952-7915(99)80050-8. PMID: 10375548.
55. Matzinger P, Bevan MJ. 1977; Induction of H-2-restricted cytotoxic T cells: in vivo induction has the appearance of being unrestricted. Cell Immunol. 33:92–100. DOI: 10.1016/0008-8749(77)90137-X. PMID: 20229.
56. Golding H, Singer A. 1984; Role of accessory cell processing and presentation of shed H-2 alloantigens in allospecific cytotoxic T lymphocyte responses. J Immunol. 133:597–605. DOI: 10.4049/jimmunol.133.2.597. PMID: 6203969.
57. Breur-Vriesendorp BS, Ivanyi P. 1993; Self-restricted primary human histocompatibility leukocyte antigen (HLA)-specific cytotoxic T lymphocytes. Int Immunol. 5:103–7. DOI: 10.1093/intimm/5.1.103. PMID: 8443120.
58. Popov IA, Fedoseyeva EV, Orr PL, Garovoy MR, Benichou G. 1995; Direct evidence for in vivo induction of CD8+ cytotoxic T cells directed to donor MHC class I peptides following mouse allotransplantation. Transplantation. 60:1621–4.
59. Kievits F, Ivanyi P. 1991; A subpopulation of mouse cytotoxic T lymphocytes recognizes allogeneic H-2 class I antigens in the context of other H-2 class I molecules. J Exp Med. 174:15–9. DOI: 10.1084/jem.174.1.15. PMID: 1905337. PMCID: PMC2118870.
60. Kievits F, Ivanyi P. 1993; H-2 class I-restricted recognition of allogeneic class I peptides. Transplant Proc. 25(1 Pt 1):88.
61. Valujskikh A, Hartig C, Heeger PS. 2001; Indirectly primed CD8+ T cells are a prominent component of the allogeneic T-cell repertoire after skin graft rejection in mice. Transplantation. 71:418–21. DOI: 10.1097/00007890-200102150-00014. PMID: 11233904.
62. Snell GD. 1957; The homograft reaction. Annu Rev Microbiol. 11:439–58. DOI: 10.1146/annurev.mi.11.100157.002255. PMID: 13470828.
63. Barker CF, Billingham RE. 1972; Immunologically competent passenger cells in mouse skin. Transplantation. 14:525–7. DOI: 10.1097/00007890-197210000-00022. PMID: 4404959.
64. Hall JG. 1967; Studies of the cells in the afferent and efferent lymph of lymph nodes draining the site of skin homografts. J Exp Med. 125:737–54. DOI: 10.1084/jem.125.5.737. PMID: 5337308. PMCID: PMC2138206.
65. Wachtel SS, Silvers WK. 1972; The role of passenger leukocytes in the anomalous survival of neonatal skin grafts in mice. J Exp Med. 135:388–404. DOI: 10.1084/jem.135.2.388. PMID: 4551219. PMCID: PMC2180515.
66. Billingham RE, Silvers WK. 1967; Studies on the conservation of epidermal specificies of skin and certain mucosas in adult mammals. J Exp Med. 125:429–46. DOI: 10.1084/jem.125.3.429. PMID: 5334545. PMCID: PMC2138290.
67. Barker CF, Billingham RE. 1966; Skin homografts in vascularized skin pedicles in guinea pigs. Surg Forum. 17:480–2.
68. Tilney NL, Gowans JL. 1970; Host sensitization by alymphatic skin allografts in the rat. Surg Forum. 21:512–4.
69. Scothorne RJ. 1958; Lymphatic repair and the genesis of homograft immunity. Ann N Y Acad Sci. 73:673–5. DOI: 10.1111/j.1749-6632.1959.tb40843.x. PMID: 13617875.
70. Barker CF, Billingham RE. 1972; Analysis of local anatomic factors that influence the survival times of pure epidermal and full-thickness skin homografts in guinea pigs. Ann Surg. 176:597–604. DOI: 10.1097/00000658-197211000-00004. PMID: 4562572. PMCID: PMC1355365.
71. Smyth LA, Lechler RI, Lombardi G. 2017; Continuous acquisition of MHC: peptide complexes by recipient cells contributes to the generation of anti-graft CD8+ T cell immunity. Am J Transplant. 17:60–8. DOI: 10.1111/ajt.13996. PMID: 27495898. PMCID: PMC5213774.
72. Herrera OB, Golshayan D, Tibbott R, Salcido Ochoa F, James MJ, Marelli-Berg FM, et al. 2004; A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 173:4828–37. DOI: 10.4049/jimmunol.173.8.4828. PMID: 15470023.
73. Smyth LA, Herrera OB, Golshayan D, Lombardi G, Lechler RI. 2006; A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation. 82(1 Suppl):S15–8. DOI: 10.1097/01.tp.0000231347.06149.ca. PMID: 16829787.
74. Russo V, Zhou D, Sartirana C, Rovere P, Villa A, Rossini S, et al. 2000; Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood. 95:3473–7. DOI: 10.1182/blood.V95.11.3473. PMID: 10828031.
75. Warrens AN, Lombardi G, Lechler RI. 1994; Presentation and recognition of major and minor histocompatibility antigens. Transpl Immunol. 2:103–7. DOI: 10.1016/0966-3274(94)90036-1. PMID: 7953301.
76. Millrain M, Chandler P, Dazzi F, Scott D, Simpson E, Dyson PJ. 2001; Examination of HY response: T cell expansion, immunodominance, and cross-priming revealed by HY tetramer analysis. J Immunol. 167:3756–64. DOI: 10.4049/jimmunol.167.7.3756. PMID: 11564792.
77. Millrain M, Scott D, Addey C, Dewchand H, Ellis P, Ehrmann I, et al. 2005; Identification of the immunodominant HY H2-D(k) epitope and evaluation of the role of direct and indirect antigen presentation in HY responses. J Immunol. 175:7209–17. DOI: 10.4049/jimmunol.175.11.7209. PMID: 16301625.
78. Chen Y, Demir Y, Valujskikh A, Heeger PS. 2003; The male minor transplantation antigen preferentially activates recipient CD4+ T cells through the indirect presentation pathway in vivo. J Immunol. 171:6510–8. DOI: 10.4049/jimmunol.171.12.6510. PMID: 14662851.
79. Hippen BE, DeMattos A, Cook WJ, Kew CE 2nd, Gaston RS. 2005; Association of CD20+ infiltrates with poorer clinical outcomes in acute cellular rejection of renal allografts. Am J Transplant. 5:2248–52. DOI: 10.1111/j.1600-6143.2005.01009.x. PMID: 16095505.
80. Du JF, Li QY, Ji XQ, Chen G, Bai X, Zuo FY, et al. 2011; Inhibition of T-cell expansion caused by inducible costimulator/B7h costimulation blockade in direct allorecognition pathway. Transplant Proc. 43:3960–3. DOI: 10.1016/j.transproceed.2011.09.044. PMID: 22172879.
81. Csencsits K, Wood SC, Lu G, Magee JC, Eichwald EJ, Chang CH, et al. 2005; Graft rejection mediated by CD4+ T cells via indirect recognition of alloantigen is associated with a dominant Th2 response. Eur J Immunol. 35:843–51. DOI: 10.1002/eji.200425685. PMID: 15714582.
82. Plenter RJ, Grazia TJ, Doan AN, Gill RG, Pietra BA. 2012; CD4 T cells mediate cardiac xenograft rejection via host MHC Class II. J Heart Lung Transplant. 31:1018–24. DOI: 10.1016/j.healun.2012.05.018. PMID: 22789136. PMCID: PMC3418866.
83. Ma CS, Deenick EK, Batten M, Tangye SG. 2012; The origins, function, and regulation of T follicular helper cells. J Exp Med. 209:1241–53. DOI: 10.1084/jem.20120994. PMID: 22753927. PMCID: PMC3405510.
84. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, et al. 2010; Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 143:592–605. DOI: 10.1016/j.cell.2010.10.032. PMID: 21074050. PMCID: PMC3035939.
85. Kurosaki T, Kometani K, Ise W. 2015; Memory B cells. Nat Rev Immunol. 15:149–59. DOI: 10.1038/nri3802. PMID: 25677494.
86. Steele DJ, Laufer TM, Smiley ST, Ando Y, Grusby MJ, Glimcher LH, et al. 1996; Two levels of help for B cell alloantibody production. J Exp Med. 183:699–703. DOI: 10.1084/jem.183.2.699. PMID: 8627185. PMCID: PMC2192460.
87. Irei T, Ohdan H, Zhou W, Ishiyama K, Tanaka Y, Ide K, et al. 2007; The persistent elimination of B cells responding to blood group A carbohydrates by synthetic group A carbohydrates and B-1 cell differentiation blockade: novel concept in preventing antibody-mediated rejection in ABO-incompatible transplantation. Blood. 110:4567–75. DOI: 10.1182/blood-2007-04-082719. PMID: 17766679.
88. Zhou W, Ohdan H, Tanaka Y, Hara H, Tokita D, Onoe T, et al. 2003; NOD/SCID mice engrafted with human peripheral blood lymphocytes can be a model for investigating B cells responding to blood group A carbohydrate determinant. Transpl Immunol. 12:9–18. DOI: 10.1016/S0966-3274(03)00060-1. PMID: 14551028.
89. Tazawa H, Irei T, Tanaka Y, Igarashi Y, Tashiro H, Ohdan H. 2013; Blockade of invariant TCR-CD1d interaction specifically inhibits antibody production against blood group A carbohydrates. Blood. 122:2582–90. DOI: 10.1182/blood-2012-02-407452. PMID: 23943651. PMCID: PMC3795459.
90. Xu Y, Lee JG, Yan JJ, Ryu JH, Xu S, Yang J. 2020; Human B1 cells are the main blood group A-specific B cells that have a moderate correlation with anti-A antibody titer. Ann Lab Med. 40:48–56. DOI: 10.3343/alm.2020.40.1.48. PMID: 31432639. PMCID: PMC6713656.
91. Moon H, Park C, Lee JG, Shin SH, Lee JH, Kho I, et al. 2015; Early development in the peritoneal cavity of CD49dhigh Th1 memory phenotype CD4+ T cells with enhanced B cell helper activity. J Immunol. 195:564–75. DOI: 10.4049/jimmunol.1401661. PMID: 26056253.
92. Broz P, Monack DM. 2013; Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 13:551–65. DOI: 10.1038/nri3479. PMID: 23846113.
93. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997; A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388:394–7. DOI: 10.1038/41131. PMID: 9237759.
94. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. 1998; Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282:2085–8. DOI: 10.1126/science.282.5396.2085. PMID: 9851930.
95. Goldstein DR, Tesar BM, Akira S, Lakkis FG. 2003; Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest. 111:1571–8. DOI: 10.1172/JCI200317573. PMID: 12750407. PMCID: PMC155048.
96. McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J. 2006; Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol. 36:1994–2002. DOI: 10.1002/eji.200636249. PMID: 16874736.
97. Tesar BM, Zhang J, Li Q, Goldstein DR. 2004; TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a Toll-like receptor signal adaptor protein. Am J Transplant. 4:1429–39. DOI: 10.1111/j.1600-6143.2004.00544.x. PMID: 15307830.
98. Hutton MJ, Westwell-Roper C, Soukhatcheva G, Plesner A, Dutz JP, Verchere CB. 2009; Islet allograft rejection is independent of Toll-like receptor signaling in mice. Transplantation. 88:1075–80. DOI: 10.1097/TP.0b013e3181bd3fe2. PMID: 19898202.
99. Barclay AN, Van den Berg TK. 2014; The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 32:25–50. DOI: 10.1146/annurev-immunol-032713-120142. PMID: 24215318.
100. Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, et al. 2017; Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol. 2:eaam6202. DOI: 10.1126/sciimmunol.aam6202. PMID: 28783664. PMCID: PMC5653256.
101. Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y, Tokuyama T, et al. 2013; Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood. 121:1316–25. DOI: 10.1182/blood-2012-06-440354. PMID: 23293079.
102. Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, et al. 2020; PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science. 368:1122–7. DOI: 10.1126/science.aax4040. PMID: 32381589. PMCID: PMC7379379.
103. Wong AS, Mortin-Toth S, Sung M, Canty AJ, Gulban O, Greaves DR, et al. 2014; Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse. J Immunol. 193:4833–44. DOI: 10.4049/jimmunol.1401984. PMID: 25305319.
104. Kubagawa H, Chen CC, Ho LH, Shimada TS, Gartland L, Mashburn C, et al. 1999; Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med. 189:309–18. DOI: 10.1084/jem.189.2.309. PMID: 9892613. PMCID: PMC2192985.
105. Liu W, Xiao X, Demirci G, Madsen J, Li XC. 2012; Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol. 188:2703–11. DOI: 10.4049/jimmunol.1102997. PMID: 22327074. PMCID: PMC3298083.
106. Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. 2022; Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 101:692–710. DOI: 10.1016/j.kint.2021.11.029. PMID: 34915041.
107. Hughes AD, Zhao D, Dai H, Abou-Daya KI, Tieu R, Rammal R, et al. 2020; Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts. J Clin Invest. 130:287–94. DOI: 10.1172/JCI125773. PMID: 31763998. PMCID: PMC6934226.
108. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. 2017; The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 214:1913–23. DOI: 10.1084/jem.20170355. PMID: 28606987. PMCID: PMC5502436.
109. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. 2013; Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 38:79–91. DOI: 10.1016/j.immuni.2012.12.001. PMID: 23273845. PMCID: PMC3908543.
110. Zhao D, Abou-Daya KI, Dai H, Oberbarnscheidt MH, Li XC, Lakkis FG. 2020; Innate allorecognition and memory in transplantation. Front Immunol. 11:918. DOI: 10.3389/fimmu.2020.00918. PMID: 32547540. PMCID: PMC7270276.
111. Espinosa JR, Samy KP, Kirk AD. 2016; Memory T cells in organ transplantation: progress and challenges. Nat Rev Nephrol. 12:339–47. DOI: 10.1038/nrneph.2016.9. PMID: 26923209. PMCID: PMC5341793.
112. Ford ML, Larsen CP. 2010; Overcoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Curr Opin Organ Transplant. 15:405–10. DOI: 10.1097/MOT.0b013e32833b7916. PMID: 20616729. PMCID: PMC4642449.
113. Macedo C, Orkis EA, Popescu I, Elinoff BD, Zeevi A, Shapiro R, et al. 2009; Contribution of naïve and memory T-cell populations to the human alloimmune response. Am J Transplant. 9:2057–66. DOI: 10.1111/j.1600-6143.2009.02742.x. PMID: 19624567.
114. Uehara S, Chase CM, Kitchens WH, Rose HS, Colvin RB, Russell PS, et al. 2005; NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J Immunol. 175:3424–30. DOI: 10.4049/jimmunol.175.5.3424. PMID: 16116237.
115. Maier S, Tertilt C, Chambron N, Gerauer K, Hüser N, Heidecke CD, et al. 2001; Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med. 7:557–62. DOI: 10.1038/87880. PMID: 11329056.
116. Thielens A, Vivier E, Romagné F. 2012; NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol. 24:239–45. DOI: 10.1016/j.coi.2012.01.001. PMID: 22264929.
117. Horowitz A, Djaoud Z, Nemat-Gorgani N, Blokhuis J, Hilton HG, Béziat V, et al. 2016; Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol. 1:eaag1672. DOI: 10.1126/sciimmunol.aag1672. PMID: 27868107. PMCID: PMC5110269.
118. Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, et al. 1998; HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 391:795–9. DOI: 10.1038/35869. PMID: 9486650.
119. Wei XH, Orr HT. 1990; Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Hum Immunol. 29:131–42. DOI: 10.1016/0198-8859(90)90076-2. PMID: 2249951.
120. Coupel S, Moreau A, Hamidou M, Horejsi V, Soulillou JP, Charreau B. 2007; Expression and release of soluble HLA-E is an immunoregulatory feature of endothelial cell activation. Blood. 109:2806–14. DOI: 10.1182/blood-2006-06-030213. PMID: 17179229.
121. Braud VM, Allan DS, Wilson D, McMichael AJ. 1998; TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol. 8:1–10. DOI: 10.1016/S0960-9822(98)70014-4. PMID: 9427624.
122. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. 1998; HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol. 160:4951–60. DOI: 10.4049/jimmunol.160.10.4951. PMID: 9590243.
123. Michaëlsson J, Teixeira de Matos C, Achour A, Lanier LL, Kärre K, Söderström K. 2002; A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med. 196:1403–14. DOI: 10.1084/jem.20020797. PMID: 12461076. PMCID: PMC2194258.
124. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. 2011; Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–9. DOI: 10.1126/science.1198687. PMID: 21212348. PMCID: PMC3089969.
125. Chauveau A, Tonnerre P, Pabois A, Gavlovsky PJ, Chatelais M, Coupel S, et al. 2014; Endothelial cell activation and proliferation modulate NKG2D activity by regulating MICA expression and shedding. J Innate Immun. 6:89–104. DOI: 10.1159/000351605. PMID: 23860405. PMCID: PMC6784110.
126. Tonnerre P, Gérard N, Chatelais M, Poli C, Allard S, Cury S, et al. 2013; MICA variant promotes allosensitization after kidney transplantation. J Am Soc Nephrol. 24:954–66. DOI: 10.1681/ASN.2012080814. PMID: 23539759. PMCID: PMC3665393.
127. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. 1998; NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 187:2065–72. DOI: 10.1084/jem.187.12.2065. PMID: 9625766. PMCID: PMC2212362.
128. al-Daccak R, Wang FQ, Theophille D, Lethielleux P, Colombani J, Loiseau P. 1991; Gene polymorphism of HLA-DPB1 and DPA1 loci in caucasoid population: frequencies and DPB1-DPA1 associations. Hum Immunol. 31:277–85. DOI: 10.1016/0198-8859(91)90100-N. PMID: 1680839.
129. Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, et al. 2019; A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol. 20:1129–37. DOI: 10.1038/s41590-019-0448-4. PMID: 31358998. PMCID: PMC8370669.
130. Muczynski KA, Ekle DM, Coder DM, Anderson SK. 2003; Normal human kidney HLA-DR-expressing renal microvascular endothelial cells: characterization, isolation, and regulation of MHC class II expression. J Am Soc Nephrol. 14:1336–48. DOI: 10.1097/01.ASN.0000061778.08085.9F. PMID: 12707403.
131. Thaunat O, Hanf W, Dubois V, McGregor B, Perrat G, Chauvet C, et al. 2009; Chronic humoral rejection mediated by anti-HLA-DP alloantibodies: insights into the role of epitope sharing in donor-specific and non-donor specific alloantibodies generation. Transpl Immunol. 20:209–11. DOI: 10.1016/j.trim.2008.12.006. PMID: 19166936.
132. Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B. 1998; Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity. 8:157–66. DOI: 10.1016/S1074-7613(00)80468-9. PMID: 9491997.
133. O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH. 2006; T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol. 7:507–16. DOI: 10.1038/ni1332. PMID: 16617337.
134. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. 2012; Cytokine activation induces human memory-like NK cells. Blood. 120:4751–60. DOI: 10.1182/blood-2012-04-419283. PMID: 22983442. PMCID: PMC3520618.
135. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. 2016; Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 8:357ra123. DOI: 10.1126/scitranslmed.aaf2341. PMID: 27655849. PMCID: PMC5436500.
136. Keppel MP, Yang L, Cooper MA. 2013; Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J Immunol. 190:4754–62. DOI: 10.4049/jimmunol.1201742. PMID: 23530145. PMCID: PMC3633638.
137. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM. 2001; Specific and nonspecific NK cell activation during virus infection. Nat Immunol. 2:951–6. DOI: 10.1038/ni714. PMID: 11550009.
138. Sun JC, Beilke JN, Lanier LL. 2009; Adaptive immune features of natural killer cells. Nature. 457:557–61. DOI: 10.1038/nature07665. PMID: 19136945. PMCID: PMC2674434.
139. Nabekura T, Lanier LL. 2014; Antigen-specific expansion and differentiation of natural killer cells by alloantigen stimulation. J Exp Med. 211:2455–65. DOI: 10.1084/jem.20140798. PMID: 25366966. PMCID: PMC4235640.
140. Koenig A, Chen CC, Marçais A, Barba T, Mathias V, Sicard A, et al. 2019; Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat Commun. 10:5350. DOI: 10.1038/s41467-019-13113-5. PMID: 31767837. PMCID: PMC6877588.
141. Koenig A, Mezaache S, Callemeyn J, Barba T, Mathias V, Sicard A, et al. 2021; Missing self-induced activation of NK cells combines with non-complement-fixing donor-specific antibodies to accelerate kidney transplant loss in chronic antibody-mediated rejection. J Am Soc Nephrol. 32:479–94. DOI: 10.1681/ASN.2020040433. PMID: 33239394. PMCID: PMC8054908.
142. Callemeyn J, Senev A, Coemans M, Lerut E, Sprangers B, Kuypers D, et al. 2021; Missing self-induced microvascular rejection of kidney allografts: a population-based study. J Am Soc Nephrol. 32:2070–82. DOI: 10.1681/ASN.2020111558. PMID: 34301794. PMCID: PMC8455279.
143. van Bergen J, Thompson A, Haasnoot GW, Roodnat JI, de Fijter JW, Claas FH, et al. 2011; KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am J Transplant. 11:1959–64. DOI: 10.1111/j.1600-6143.2011.03621.x. PMID: 21714849.
144. Zhang Y, Yan AW, Boelen L, Hadcocks L, Salam A, Gispert DP, et al. 2023; KIR-HLA interactions extend human CD8+ T cell lifespan in vivo. J Clin Invest. 133:e169496. DOI: 10.1172/JCI169496. PMID: 37071474. PMCID: PMC10266773.
145. Tasca P, van den Berg BM, Rabelink TJ, Wang G, Heijs B, van Kooten C, et al. 2024; Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol. 20:755–66. DOI: 10.1038/s41581-024-00861-x. PMID: 38965417.
146. Lamarthée B, Callemeyn J, Van Herck Y, Antoranz A, Anglicheau D, Boada P, et al. 2023; Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat Commun. 14:4359. DOI: 10.1038/s41467-023-39859-7. PMID: 37468466. PMCID: PMC10356785.
147. Lucas PJ, Shearer GM, Neudorf S, Gress RE. 1990; The human antimurine xenogeneic cytotoxic response. I. Dependence on responder antigen-presenting cells. J Immunol. 144:4548–54. DOI: 10.4049/jimmunol.144.12.4548. PMID: 1972159.
148. Lucas PJ, Bare CV, Gress RE. 1995; The human anti-murine xenogeneic cytotoxic response. II. Activated murine antigen-presenting cells directly stimulate human T helper cells. J Immunol. 154:3761–70. DOI: 10.4049/jimmunol.154.8.3761. PMID: 7706717.
149. Yamada K, Sachs DH, DerSimonian H. 1995; Human anti-porcine xenogeneic T cell response: evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol. 155:5249–56. DOI: 10.4049/jimmunol.155.11.5249. PMID: 7594537.
150. Dorling A, Lombardi G, Binns R, Lechler RI. 1996; Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol. 26:1378–87. DOI: 10.1002/eji.1830260630. PMID: 8647220.
151. Murphy PM. 1993; Molecular mimicry and the generation of host defense protein diversity. Cell. 72:823–6. DOI: 10.1016/0092-8674(93)90571-7. PMID: 8458078.
152. Mason D. 1998; A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 19:395–404. DOI: 10.1016/S0167-5699(98)01299-7. PMID: 9745202.
153. Murray AG, Khodadoust MM, Pober JS, Bothwell AL. 1994; Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity. 1:57–63. DOI: 10.1016/1074-7613(94)90009-4. PMID: 7889399.
154. Vallée I, Watier H, Thibault G, Salmon H, Gruel Y, Lebranchu Y, et al. 1995; Evidence of noninvolvement of swine MHC class II in the in vitro proliferative response of human lymphocytes to porcine endothelial cells. Transplantation. 59:897–901. DOI: 10.1097/00007890-199503270-00017. PMID: 7701587.
155. Bravery CA, Batten P, Yacoub MH, Rose ML. 1995; Direct recognition of SLA- and HLA-like class II antigens on porcine endothelium by human T cells results in T cell activation and release of interleukin-2. Transplantation. 60:1024–33. DOI: 10.1097/00007890-199511000-00025. PMID: 7491676.
156. Rollins SA, Kennedy SP, Chodera AJ, Elliott EA, Zavoico GB, Matis LA. 1994; Evidence that activation of human T cells by porcine endothelium involves direct recognition of porcine SLA and costimulation by porcine ligands for LFA-1 and CD2. Transplantation. 57:1709–16. DOI: 10.1097/00007890-199457120-00004. PMID: 7912457.
157. Candinas D, Belliveau S, Koyamada N, Miyatake T, Hechenleitner P, Mark W, et al. 1996; T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation. 62:1920–7. DOI: 10.1097/00007890-199612270-00042. PMID: 8990388.
158. Fox A, Mountford J, Braakhuis A, Harrison LC. 2001; Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol. 166:2133–40. DOI: 10.4049/jimmunol.166.3.2133. PMID: 11160265.
159. Basker M, Alwayn IP, Buhler L, Harper D, Abraham S, Kruger Gray H, et al. 2001; Clearance of mobilized porcine peripheral blood progenitor cells is delayed by depletion of the phagocytic reticuloendothelial system in baboons. Transplantation. 72:1278–85. DOI: 10.1097/00007890-200110150-00017. PMID: 11602856.
160. Hu Z, Van Rooijen N, Yang YG. 2011; Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood. 118:5938–46. DOI: 10.1182/blood-2010-11-321414. PMID: 21926352. PMCID: PMC3228505.
161. Peterson MD, Jin R, Hyduk S, Duchesneau P, Cybulsky MI, Waddell TK. 2005; Monocyte adhesion to xenogeneic endothelium during laminar flow is dependent on alpha-Gal-mediated monocyte activation. J Immunol. 174:8072–81. DOI: 10.4049/jimmunol.174.12.8072. PMID: 15944315.
162. Xu XC, Goodman J, Sasaki H, Lowell J, Mohanakumar T. 2002; Activation of natural killer cells and macrophages by porcine endothelial cells augments specific T-cell xenoresponse. Am J Transplant. 2:314–22. DOI: 10.1034/j.1600-6143.2002.20405.x. PMID: 12118852.
163. Jin R, Greenwald A, Peterson MD, Waddell TK. 2006; Human monocytes recognize porcine endothelium via the interaction of galectin 3 and alpha-GAL. J Immunol. 177:1289–95. DOI: 10.4049/jimmunol.177.2.1289. PMID: 16818789.
164. Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, et al. 1998; Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol. 161:1853–9. DOI: 10.4049/jimmunol.161.4.1853. PMID: 9712053.
165. Itoh T, Hata Y, Nishinakamura H, Kumano K, Takahashi H, Kodama S. 2016; Islet-derived damage-associated molecular pattern molecule contributes to immune responses following microencapsulated neonatal porcine islet xenotransplantation in mice. Xenotransplantation. 23:393–404. DOI: 10.1111/xen.12253. PMID: 27422454.
166. Schneider MK, Forte P, Seebach JD. 2001; Adhesive interactions between human NK cells and porcine endothelial cells. Scand J Immunol. 54:70–5. DOI: 10.1046/j.1365-3083.2001.00966.x. PMID: 11439150.
167. Matter-Reissmann UB, Forte P, Schneider MK, Filgueira L, Groscurth P, Seebach JD. 2002; Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression. Xenotransplantation. 9:325–37. DOI: 10.1034/j.1399-3089.2002.01074.x. PMID: 12199864.
168. Resch T, Fabritius C, Ebner S, Ritschl P, Kotsch K. 2015; The role of natural killer cells in humoral rejection. Transplantation. 99:1335–40. DOI: 10.1097/TP.0000000000000757. PMID: 26018352.
169. Watzl C. 2014; How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv Immunol. 124:137–70. DOI: 10.1016/B978-0-12-800147-9.00005-4. PMID: 25175775.
170. Lilienfeld BG, Garcia-Borges C, Crew MD, Seebach JD. 2006; Porcine UL16-binding protein 1 expressed on the surface of endothelial cells triggers human NK cytotoxicity through NKG2D. J Immunol. 177:2146–52. DOI: 10.4049/jimmunol.177.4.2146. PMID: 16887974.
171. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. 2013; Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 31:227–58. DOI: 10.1146/annurev-immunol-020711-075005. PMID: 23516982. PMCID: PMC3868343.
172. Puga Yung G, Schneider MK, Seebach JD. 2017; The role of NK cells in pig-to-human xenotransplantation. J Immunol Res. 2017:4627384. DOI: 10.1155/2017/4627384. PMID: 29410970. PMCID: PMC5749293.
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr