Clin Transplant Res.  2024 Dec;38(4):257-272. 10.4285/ctr.24.0059.

Advancing immunosuppression in liver transplantation: the role of regulatory T cells in immune modulation and graft tolerance

Affiliations
  • 1The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 3Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Abstract

Prolonged immunosuppressive therapy in liver transplantation (LT) is associated with significant adverse effects, such as nephrotoxicity, metabolic complications, and heightened risk of infection or malignancy. Regulatory T cells (Tregs) represent a promising target for inducing immune tolerance in LT, with the potential to reduce or eliminate the need for life-long immunosuppression. This review summarizes current knowledge on the roles of Tregs in LT, highlighting their mechanisms and the impact of various immunosuppressive agents on Treg stability and function. The liver’s distinct immunological microenvironment, characterized by tolerogenic antigen-presenting cells and high levels of interleukin (IL)-10 and transforming growth factor-β, positions this organ as an ideal setting for Treg-mediated tolerance. We discuss Treg dynamics in LT, their association with rejection risk, and their utility as biomarkers of transplant outcomes. Emerging strategies, including the use of low-dose calcineurin inhibitors with mammalian target of rapamycin inhibitors, adoptive Treg therapy, and low-dose IL-2, aim to enhance Treg function while providing sufficient immunosuppression. Thus, the future of LT involves precision medicine approaches that integrate Treg monitoring with tailored immunosuppressive protocols to optimize long-term outcomes for LT recipients.

Keyword

Liver transplantation; Regulatory T cell; Transplant rejection

Figure

  • Fig. 1 The role of Tregs in direct and indirect allorecognition pathways in graft rejection. This figure illustrates the role of Tregs in suppressing immune responses and preventing graft damage through direct and indirect allorecognition pathways. In the direct pathway, donor graft cells present alloantigens to recipient CD4+ T cells, while in the indirect pathway, recipient APCs present processed donor peptides. Both pathways activate CD8+ T cells and B cells, potentially leading to graft damage. Tregs inhibit T cell activation by depriving effector T cells of IL-2 (via CD25), suppressing dendritic cells through the CTLA-4/CD80 axis, and producing inhibitory cytokines (IL-10, IL-35, and TGF-β). They also modulate B cells via the PD-1/PD-L1 axis and generate adenosine (through CD39/CD73) to protect the graft. MHCII, major histocompatibility complex class II; TCR, T cell receptor; Treg, regulatory T cell; PD-1, programmed cell death protein 1; IL, interleukin; IFN-γ, interferon gamma; ADCC, antibody-dependent cell-mediated cytotoxicity; APC, antigen-presenting cell; TGF, transforming growth factor; DC, dendritic cell; CTLA-4, cytotoxic T-lymphocyte-associated protein 4.

  • Fig. 2 Effects of immunosuppressive regimens on Treg dynamics post-LT. This figure illustrates the impact of various immunosuppressive agents on Tregs following LT. Glucocorticoids initially increase Treg levels at low doses but decrease them at high doses. High doses of tacrolimus reduce Tregs, whereas mycophenolate mofetil has a neutral effect on Tregs. Basiliximab, administered on days 0 and 4, has a transient Treg depletion effect. Everolimus, which may be introduced around day 30, increases Treg levels. Early reduction of Tregs by day 7 is associated with a higher risk of graft rejection, as indicated by flow cytometry data for FOXP3+CD25+ Tregs. Treg, regulatory T cell; IV, intravenous; PO, oral; LT, liver transplantation.


Reference

1. Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, et al. 1979; Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 2:1033–6. DOI: 10.1016/S0140-6736(79)92440-1. PMID: 91781.
2. Halloran PF. 2004; Immunosuppressive drugs for kidney transplantation. N Engl J Med. 351:2715–29. DOI: 10.1056/NEJMra033540. PMID: 15616206.
3. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995; Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 155:1151–64. DOI: 10.4049/jimmunol.155.3.1151. PMID: 7636184.
4. Fontenot JD, Gavin MA, Rudensky AY. 2003; Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 4:330–6. DOI: 10.1038/ni904. PMID: 12612578.
5. Feng S, Ekong UD, Lobritto SJ, Demetris AJ, Roberts JP, Rosenthal P, et al. 2012; Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA. 307:283–93. DOI: 10.1001/jama.2011.2014. PMID: 22253395.
6. Crispe IN. 2009; The liver as a lymphoid organ. Annu Rev Immunol. 27:147–63. DOI: 10.1146/annurev.immunol.021908.132629. PMID: 19302037.
7. Sánchez-Fueyo A, Strom TB. 2011; Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology. 140:51–64. DOI: 10.1053/j.gastro.2010.10.059. PMID: 21073873. PMCID: PMC3866688.
8. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. 2008; Regulatory T cells and immune tolerance. Cell. 133:775–87. DOI: 10.1016/j.cell.2008.05.009. PMID: 18510923.
9. Li Y, Koshiba T, Yoshizawa A, Yonekawa Y, Masuda K, Ito A, et al. 2004; Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant. 4:2118–25. DOI: 10.1111/j.1600-6143.2004.00611.x. PMID: 15575917.
10. Crispe IN. 2003; Hepatic T cells and liver tolerance. Nat Rev Immunol. 3:51–62. DOI: 10.1038/nri981. PMID: 12511875.
11. Tiegs G, Lohse AW. 2010; Immune tolerance: what is unique about the liver. J Autoimmun. 34:1–6. DOI: 10.1016/j.jaut.2009.08.008. PMID: 19717280.
12. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. 2011; The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 12:295–303. DOI: 10.1038/ni.2005. PMID: 21358638. PMCID: PMC3077821.
13. Pollizzi KN, Powell JD. 2014; Integrating canonical and metabolic signaling programs in the regulation of T cell responses. Nat Rev Immunol. 14:435–46. DOI: 10.1038/nri3701. PMID: 24962260. PMCID: PMC4390057.
14. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. 2013; mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 499:485–90. DOI: 10.1038/nature12297. PMID: 23812589. PMCID: PMC3759242.
15. Chapman NM, Chi H. 2014; mTOR signaling, Tregs and immune modulation. Immunotherapy. 6:1295–311. DOI: 10.2217/imt.14.84. PMID: 25524385. PMCID: PMC4291176.
16. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. 2004; Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 21:589–601. DOI: 10.1016/j.immuni.2004.09.002. PMID: 15485635.
17. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. 2007; Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 27:635–46. DOI: 10.1016/j.immuni.2007.08.014. PMID: 17919943.
18. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. 2005; Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 174:1783–6. DOI: 10.4049/jimmunol.174.4.1783. PMID: 15699103.
19. Vignali DA, Collison LW, Workman CJ. 2008; How regulatory T cells work. Nat Rev Immunol. 8:523–32. DOI: 10.1038/nri2343. PMID: 18566595. PMCID: PMC2665249.
20. Morelli AE, Thomson AW. 2007; Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 7:610–21. DOI: 10.1038/nri2132. PMID: 17627284.
21. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. 2001; Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 19:683–765. DOI: 10.1146/annurev.immunol.19.1.683. PMID: 11244051.
22. Shevach EM. 2009; Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 30:636–45. DOI: 10.1016/j.immuni.2009.04.010. PMID: 19464986.
23. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. 2003; Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 198:1875–86. DOI: 10.1084/jem.20030152. PMID: 14676299. PMCID: PMC2194145.
24. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. 2006; Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 24:99–146. DOI: 10.1146/annurev.immunol.24.021605.090737. PMID: 16551245.
25. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. 2008; CTLA-4 control over Foxp3+ regulatory T cell function. Science. 322:271–5. DOI: 10.1126/science.1160062. PMID: 18845758.
26. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. 2011; Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 332:600–3. DOI: 10.1126/science.1202947. PMID: 21474713. PMCID: PMC3198051.
27. Knolle PA, Gerken G. 2000; Local control of the immune response in the liver. Immunol Rev. 174:21–34. DOI: 10.1034/j.1600-0528.2002.017408.x. PMID: 10807504.
28. Francisco LM, Sage PT, Sharpe AH. 2010; The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 236:219–42. DOI: 10.1111/j.1600-065X.2010.00923.x. PMID: 20636820. PMCID: PMC2919275.
29. Wherry EJ, Kurachi M. 2015; Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–99. DOI: 10.1038/nri3862. PMID: 26205583. PMCID: PMC4889009.
30. Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, et al. 1999; Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology. 116:1428–40. DOI: 10.1016/S0016-5085(99)70508-1. PMID: 10348827.
31. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, et al. 2000; Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med. 6:1348–54. DOI: 10.1038/82161. PMID: 11100119.
32. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. 2008; PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 26:677–704. DOI: 10.1146/annurev.immunol.26.021607.090331. PMID: 18173375. PMCID: PMC10637733.
33. Crespo J, Sun H, Welling TH, Tian Z, Zou W. 2013; T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 25:214–21. DOI: 10.1016/j.coi.2012.12.003. PMID: 23298609. PMCID: PMC3636159.
34. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al. 2002; Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 297:1867–70. DOI: 10.1126/science.1073514. PMID: 12228717.
35. Mellor AL, Munn DH. 2004; IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 4:762–74. DOI: 10.1038/nri1457. PMID: 15459668.
36. Thomson AW, Zahorchak AF, Ezzelarab MB, Butterfield LH, Lakkis FG, Metes DM. 2016; Prospective clinical testing of regulatory dendritic cells in organ transplantation. Front Immunol. 7:15. DOI: 10.3389/fimmu.2016.00015. PMID: 26858719. PMCID: PMC4729892.
37. Crispe IN. 2014; Immune tolerance in liver disease. Hepatology. 60:2109–17. DOI: 10.1002/hep.27254. PMID: 24913836. PMCID: PMC4274953.
38. Knolle PA, Wohlleber D. 2016; Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol. 13:347–53. DOI: 10.1038/cmi.2016.5. PMID: 27041636. PMCID: PMC4856811.
39. Bilzer M, Roggel F, Gerbes AL. 2006; Role of Kupffer cells in host defense and liver disease. Liver Int. 26:1175–86. DOI: 10.1111/j.1478-3231.2006.01342.x. PMID: 17105582.
40. You Q, Cheng L, Kedl RM, Ju C. 2008; Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology. 48:978–90. DOI: 10.1002/hep.22395. PMID: 18712788. PMCID: PMC2600585.
41. Gao B, Jeong WI, Tian Z. 2008; Liver: an organ with predominant innate immunity. Hepatology. 47:729–36. DOI: 10.1002/hep.22034. PMID: 18167066.
42. Racanelli V, Rehermann B. 2006; The liver as an immunological organ. Hepatology. 43(2 Suppl 1):S54–62. DOI: 10.1002/hep.21060. PMID: 16447271.
43. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. 2008; Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology. 47:296–305. DOI: 10.1002/hep.21965. PMID: 17975811.
44. Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C. 2007; Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 316:612–6. DOI: 10.1126/science.1137971. PMID: 17463291.
45. Holz LE, Benseler V, Bowen DG, Bouillet P, Strasser A, O'Reilly L, et al. 2008; Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology. 135:989–97. DOI: 10.1053/j.gastro.2008.05.078. PMID: 18619445. PMCID: PMC2956118.
46. Demirkiran A, Kok A, Kwekkeboom J, Kusters JG, Metselaar HJ, Tilanus HW, et al. 2006; Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl. 12:277–84. DOI: 10.1002/lt.20612. PMID: 16447185.
47. Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. 2015; Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 6:438. DOI: 10.3389/fimmu.2015.00438. PMID: 26379673. PMCID: PMC4553385.
48. Martínez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A, et al. 2007; Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant. 7:309–19. DOI: 10.1111/j.1600-6143.2006.01621.x. PMID: 17241111.
49. Sánchez-Fueyo A, Whitehouse G, Grageda N, Cramp ME, Lim TY, Romano M, et al. 2020; Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. Am J Transplant. 20:1125–36. DOI: 10.1111/ajt.15700. PMID: 31715056. PMCID: PMC7154724.
50. Presser D, Sester U, Mohrbach J, Janssen M, Köhler H, Sester M. 2009; Differential kinetics of effector and regulatory T cells in patients on calcineurin inhibitor-based drug regimens. Kidney Int. 76:557–66. DOI: 10.1038/ki.2009.198. PMID: 19494797.
51. Segundo DS, Ruiz JC, Izquierdo M, Fernández-Fresnedo G, Gómez-Alamillo C, Merino R, et al. 2006; Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 82:550–7. DOI: 10.1097/01.tp.0000229473.95202.50. PMID: 16926600.
52. Battaglia M, Stabilini A, Roncarolo MG. 2005; Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 105:4743–8. DOI: 10.1182/blood-2004-10-3932. PMID: 15746082.
53. Bohne F, Martínez-Llordella M, Lozano JJ, Miquel R, Benítez C, Londoño MC, et al. 2012; Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J Clin Invest. 122:368–82. DOI: 10.1172/JCI59411. PMID: 22156196. PMCID: PMC3248302.
54. He Q, Fan H, Li JQ, Qi HZ. 2011; Decreased circulating CD4+CD25highFoxp3+ T cells during acute rejection in liver transplant patients. Transplant Proc. 43:1696–700. DOI: 10.1016/j.transproceed.2011.03.084. PMID: 21693260.
55. Pons JA, Revilla-Nuin B, Baroja-Mazo A, Ramírez P, Martínez-Alarcón L, Sánchez-Bueno F, et al. 2008; FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation. 86:1370–8. DOI: 10.1097/TP.0b013e318188d3e6. PMID: 19034005.
56. Sawitzki B, Harden PN, Reinke P, Moreau A, Hutchinson JA, Game DS, et al. 2020; Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet. 395:1627–39. DOI: 10.1016/S0140-6736(20)30167-7. PMID: 32446407.
57. Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, et al. 2016; A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology. 64:632–43. DOI: 10.1002/hep.28459. PMID: 26773713.
58. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. 1991; Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66:807–15. DOI: 10.1016/0092-8674(91)90124-H. PMID: 1715244.
59. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. 1987; FK-506, a novel immunosuppressant isolated from a streptomyces. J Antibiot (Tokyo). 40:1256–65. DOI: 10.7164/antibiotics.40.1256. PMID: 2445722.
60. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J, et al. 2006; Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood. 108:390–9. DOI: 10.1182/blood-2006-01-0329. PMID: 16522809. PMCID: PMC1895845.
61. Baan CC, van der Mast BJ, Klepper M, Mol WM, Peeters AM, Korevaar SS, et al. 2005; Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation. 80:110–7. DOI: 10.1097/01.TP.0000164142.98167.4B. PMID: 16003241.
62. Levitsky J, Miller J, Wang E, Rosen A, Flaa C, Abecassis M, et al. 2009; Immunoregulatory profiles in liver transplant recipients on different immunosuppressive agents. Hum Immunol. 70:146–50. DOI: 10.1016/j.humimm.2008.12.008. PMID: 19141306. PMCID: PMC4066558.
63. San Segundo D, Fernández-Fresnedo G, Gago M, Beares I, Ruiz-Criado J, González M, et al. 2010; Number of peripheral blood regulatory T cells and lymphocyte activation at 3 months after conversion to mTOR inhibitor therapy. Transplant Proc. 42:2871–3. DOI: 10.1016/j.transproceed.2010.07.045. PMID: 20970555.
64. Han JW, Joo DJ, Kim JH, Rha MS, Koh JY, Park HJ, et al. 2020; Early reduction of regulatory T cells is associated with acute rejection in liver transplantation under tacrolimus-based immunosuppression with basiliximab induction. Am J Transplant. 20:2058–69. DOI: 10.1111/ajt.15789. PMID: 31965710.
65. Laplante M, Sabatini DM. 2012; mTOR signaling in growth control and disease. Cell. 149:274–93. DOI: 10.1016/j.cell.2012.03.017. PMID: 22500797. PMCID: PMC3331679.
66. Thomson AW, Turnquist HR, Raimondi G. 2009; Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 9:324–37. DOI: 10.1038/nri2546. PMID: 19390566. PMCID: PMC2847476.
67. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. 2006; Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 177:8338–47. DOI: 10.4049/jimmunol.177.12.8338. PMID: 17142730.
68. Hendrikx TK, Velthuis JH, Klepper M, van Gurp E, Geel A, Schoordijk W, et al. 2009; Monotherapy rapamycin allows an increase of CD4 CD25 FoxP3 T cells in renal recipients. Transpl Int. 22:884–91. DOI: 10.1111/j.1432-2277.2009.00890.x. PMID: 19453998.
69. Levitsky J, Mathew JM, Abecassis M, Tambur A, Leventhal J, Chandrasekaran D, et al. 2013; Systemic immunoregulatory and proteogenomic effects of tacrolimus to sirolimus conversion in liver transplant recipients. Hepatology. 57:239–48. DOI: 10.1002/hep.25579. PMID: 22234876. PMCID: PMC3334454.
70. Han JW, Choi JY, Jung ES, Kim JH, Cho HS, Yoo JS, et al. 2023; Association between the early high level of serum tacrolimus and recurrence of hepatocellular carcinoma in ABO-incompatible liver transplantation. World J Gastrointest Surg. 15:2727–38. DOI: 10.4240/wjgs.v15.i12.2727. PMID: 38222009. PMCID: PMC10784835.
71. Geissler EK, Schnitzbauer AA, Zülke C, Lamby PE, Proneth A, Duvoux C, et al. 2016; Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label phase 3 trial. Transplantation. 100:116–25. DOI: 10.1097/TP.0000000000000965. PMID: 26555945. PMCID: PMC4683033.
72. Toso C, Merani S, Bigam DL, Shapiro AM, Kneteman NM. 2010; Sirolimus-based immunosuppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology. 51:1237–43. DOI: 10.1002/hep.23437. PMID: 20187107.
73. Kaplan B, Qazi Y, Wellen JR. 2014; Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev (Orlando). 28:126–33. DOI: 10.1016/j.trre.2014.03.002. PMID: 24685370.
74. Coutinho AE, Chapman KE. 2011; The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 335:2–13. DOI: 10.1016/j.mce.2010.04.005. PMID: 20398732. PMCID: PMC3047790.
75. Kino T, Chrousos GP. 2001; Glucocorticoid and mineralocorticoid resistance/hypersensitivity syndromes. J Endocrinol. 169:437–45. DOI: 10.1677/joe.0.1690437. PMID: 11375113.
76. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM. 2006; Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol. 36:2139–49. DOI: 10.1002/eji.200635873. PMID: 16841298.
77. Dimeloe S, Nanzer A, Ryanna K, Hawrylowicz C. 2010; Regulatory T cells, inflammation and the allergic response: the role of glucocorticoids and vitamin D. J Steroid Biochem Mol Biol. 120:86–95. DOI: 10.1016/j.jsbmb.2010.02.029. PMID: 20227496.
78. Schäcke H, Döcke WD, Asadullah K. 2002; Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 96:23–43. DOI: 10.1016/S0163-7258(02)00297-8. PMID: 12441176.
79. Segev DL, Sozio SM, Shin EJ, Nazarian SM, Nathan H, Thuluvath PJ, et al. 2008; Steroid avoidance in liver transplantation: meta-analysis and meta-regression of randomized trials. Liver Transpl. 14:512–25. DOI: 10.1002/lt.21396. PMID: 18383081.
80. Klintmalm GB, Washburn WK, Rudich SM, Heffron TG, Teperman LW, Fasola C, et al. 2007; Corticosteroid-free immunosuppression with daclizumab in HCV(+) liver transplant recipients: 1-year interim results of the HCV-3 study. Liver Transpl. 13:1521–31. DOI: 10.1002/lt.21182. PMID: 17969201.
81. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, et al. 1998; Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med. 338:161–5. DOI: 10.1056/NEJM199801153380304. PMID: 9428817.
82. Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. 1997; Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet. 350:1193–8. DOI: 10.1016/S0140-6736(97)09278-7. PMID: 9652559.
83. Vondran FW, Timrott K, Tross J, Kollrich S, Schwarz A, Lehner F, et al. 2010; Impact of basiliximab on regulatory T-cells early after kidney transplantation: down-regulation of CD25 by receptor modulation. Transpl Int. 23:514–23. DOI: 10.1111/j.1432-2277.2009.01013.x. PMID: 19951265.
84. Webster AC, Ruster LP, McGee R, Matheson SL, Higgins GY, Willis NS, et al. 2010; Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev. 2010:CD003897. DOI: 10.1002/14651858.CD003897.pub3. PMID: 20091551. PMCID: PMC7154335.
85. Bluestone JA, Liu W, Yabu JM, Laszik ZG, Putnam A, Belingheri M, et al. 2008; The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am J Transplant. 8:2086–96. DOI: 10.1111/j.1600-6143.2008.02377.x. PMID: 18828769. PMCID: PMC3087374.
86. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. 2016; Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 374:333–43. DOI: 10.1056/NEJMoa1506027. PMID: 26816011.
87. Lagaraine C, Lemoine R, Baron C, Nivet H, Velge-Roussel F, Lebranchu Y. 2008; Induction of human CD4+ regulatory T cells by mycophenolic acid-treated dendritic cells. J Leukoc Biol. 84:1057–64. DOI: 10.1189/jlb.1007716. PMID: 18611986.
88. He X, Smeets RL, Koenen HJ, Vink PM, Wagenaars J, Boots AM, et al. 2011; Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation. Am J Transplant. 11:439–49. DOI: 10.1111/j.1600-6143.2010.03413.x. PMID: 21342445.
89. Scottà C, Fanelli G, Hoong SJ, Romano M, Lamperti EN, Sukthankar M, et al. 2016; Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica. 101:91–100. DOI: 10.3324/haematol.2015.128934. PMID: 26471483. PMCID: PMC4697896.
90. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. 2015; The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 66:311–28. DOI: 10.1146/annurev-med-051113-024537. PMID: 25587654. PMCID: PMC5634336.
91. Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. 2013; The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 122:1192–202. DOI: 10.1182/blood-2013-03-484642. PMID: 23770777.
92. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. 2015; Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 29:2062–8. DOI: 10.1038/leu.2015.212. PMID: 26228813. PMCID: PMC4854652.
93. Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. 2014; Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 123:3832–42. DOI: 10.1182/blood-2013-12-543736. PMID: 24711661.
94. Assadiasl S, Mojtahedi H, Nicknam MH. 2023; JAK Inhibitors in solid organ transplantation. J Clin Pharmacol. 63:1330–43. DOI: 10.1002/jcph.2325. PMID: 37500063.
95. De Simone P, Nevens F, De Carlis L, Metselaar HJ, Beckebaum S, Saliba F, et al. 2012; Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant. 12:3008–20. DOI: 10.1111/j.1600-6143.2012.04212.x. PMID: 22882750. PMCID: PMC3533764.
96. Tang Q, Bluestone JA. 2013; Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med. 3:a015552. DOI: 10.1101/cshperspect.a015552. PMID: 24186492. PMCID: PMC3808774.
97. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. 2004; Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 104:895–903. DOI: 10.1182/blood-2004-01-0086. PMID: 15090447.
98. Trzonkowski P, Bieniaszewska M, Juścińska J, Dobyszuk A, Krzystyniak A, Marek N, et al. 2009; First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol. 133:22–6. DOI: 10.1016/j.clim.2009.06.001. PMID: 19559653.
99. Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, et al. 2022; Selective decrease of donor-reactive Tregs after liver transplantation limits Treg therapy for promoting allograft tolerance in humans. Sci Transl Med. 14:eabo2628. DOI: 10.1126/scitranslmed.abo2628. PMID: 36322627. PMCID: PMC11016119.
100. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martínez-Llordella M, Ashby M, et al. 2009; Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 10:1000–7. DOI: 10.1038/ni.1774. PMID: 19633673. PMCID: PMC2729804.
101. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. 2010; FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10:490–500. DOI: 10.1038/nri2785. PMID: 20559327.
102. Safinia N, Vaikunthanathan T, Fraser H, Thirkell S, Lowe K, Blackmore L, et al. 2016; Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget. 7:7563–77. DOI: 10.18632/oncotarget.6927. PMID: 26788992. PMCID: PMC4884938.
103. Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E, Yang JH, et al. 2017; IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proc Natl Acad Sci U S A. 114:7083–8. DOI: 10.1073/pnas.1620835114. PMID: 28584086. PMCID: PMC5502598.
104. Rosenzwajg M, Churlaud G, Mallone R, Six A, Dérian N, Chaara W, et al. 2015; Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 58:48–58. DOI: 10.1016/j.jaut.2015.01.001. PMID: 25634360. PMCID: PMC8153751.
105. Lim TY, Perpiñán E, Londoño MC, Miquel R, Ruiz P, Kurt AS, et al. 2023; Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J Hepatol. 78:153–64. DOI: 10.1016/j.jhep.2022.08.035. PMID: 36087863.
106. Nafady-Hego H, Li Y, Ohe H, Zhao X, Satoda N, Sakaguchi S, et al. 2010; The generation of donor-specific CD4+CD25++CD45RA+ naïve regulatory T cells in operationally tolerant patients after pediatric living-donor liver transplantation. Transplantation. 90:1547–55. DOI: 10.1097/TP.0b013e3181f9960d. PMID: 21085066.
107. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. 2009; Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 30:899–911. DOI: 10.1016/j.immuni.2009.03.019. PMID: 19464196.
108. Han JW, Sung PS, Hong SH, Lee H, Koh JY, Lee H, et al. 2020; IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J Hepatol. 73:72–83. DOI: 10.1016/j.jhep.2020.02.009. PMID: 32088322.
109. Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, et al. 2021; Super-treg: toward a new era of adoptive Treg therapy enabled by genetic modifications. Front Immunol. 11:611638. DOI: 10.3389/fimmu.2020.611638. PMID: 33717052. PMCID: PMC7945682.
110. Gille I, Claas FH, Haasnoot GW, Heemskerk MH, Heidt S. 2022; Chimeric antigen receptor (CAR) regulatory T-cells in solid organ transplantation. Front Immunol. 13:874157. DOI: 10.3389/fimmu.2022.874157. PMID: 35720402. PMCID: PMC9204347.
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr