1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71:209–49. DOI:
10.3322/caac.21660. PMID:
33538338.
2. Tang LQ, Li CF, Li J, et al. Establishment and validation of prognostic nomograms for endemic nasopharyngeal carcinoma. J Natl Cancer Inst. 2016; 108:djv291. DOI:
10.1093/jnci/djv291. PMID:
26467665.
3. Xu JY, Wei XL, Wang YQ, Wang FH. Current status and advances of immunotherapy in nasopharyngeal carcinoma. Ther Adv Med Oncol. 2022; 14:17588359221096214. DOI:
10.1177/17588359221096214. PMID:
35547095.
5. Adkins DR, Haddad RI. Clinical trial data of anti-PD-1/PD-L1 therapy for recurrent or metastatic nasopharyngeal Carcinoma: a review. Cancer Treat Rev. 2022; 109:102428. DOI:
10.1016/j.ctrv.2022.102428. PMID:
35753157.
6. Bingle CD, Craven CJ. PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum Mol Genet. 2002; 11:937–43. DOI:
10.1093/hmg/11.8.937. PMID:
11971875.
7. Geetha C, Venkatesh SG, Bingle L, Bingle CD, Gorr SU. Design and validation of anti-inflammatory peptides from human parotid secretory protein. J Dent Res. 2005; 84:149–53. DOI:
10.1177/154405910508400208. PMID:
15668332.
8. Bartlett JA, Gakhar L, Penterman J, et al. PLUNC: a multifunctional surfactant of the airways. Biochem Soc Trans. 2011; 39:1012–6. DOI:
10.1042/bst0391012. PMID:
21787339.
9. Ben-Meir E, Perrem L, Shaw M, Ratjen F, Grasemann H. SPLUNC1 as a biomarker of pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros. 2024; 23:288–92. DOI:
10.1016/j.jcf.2024.02.009. PMID:
38413298.
10. Liu H, Zhang X, Wu J, French SW, He Z. New insights on the palate, lung, and nasal epithelium clone (PLUNC) proteins: based on molecular and functional analysis of its homolog of YH1/SPLUNC1. Exp Mol Pathol. 2016; 100:363–9. DOI:
10.1016/j.yexmp.2015.12.002. PMID:
26654795.
11. Tsou YA, Peng MT, Wu YF, et al. Decreased PLUNC expression in nasal polyps is associated with multibacterial colonization in chronic rhinosinusitis patients. Eur Arch Otorhinolaryngol. 2014; 271:299–304. DOI:
10.1007/s00405-013-2535-8. PMID:
23644997.
12. Khanal S, Webster M, Niu N, et al. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J. 2021; 58:2000507. DOI:
10.1183/13993003.00507-2020. PMID:
33958427.
13. Osada M, Aishima S, Hirahashi M, et al. Combination of hepatocellular markers is useful for prognostication in gastric hepatoid adenocarcinoma. Hum Pathol. 2014; 45:1243–50. DOI:
10.1016/j.humpath.2014.02.003. PMID:
24767858.
14. Zhang W, Zeng Z, Wei F, et al. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells. FEBS J. 2014; 281:4815–29. DOI:
10.1111/febs.13020. PMID:
25161098.
15. Ou C, Sun Z, Zhang H, et al. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-kappaB pathway. Oncol Rep. 2015; 33:2779–88. DOI:
10.3892/or.2015.3913. PMID:
25891128.
16. Liu H, Tang L, Gong S, et al. USP7 inhibits the progression of nasopharyngeal carcinoma via promoting SPLUNC1-mediated M1 macrophage polarization through TRIM24. Cell Death Dis. 2023; 14:852. DOI:
10.1038/s41419-023-06368-w. PMID:
38129408.
17. Tang L, Peng L, Liu H, et al. SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of myeloid-derived suppressor cells. Med Oncol. 2022; 39:214. DOI:
10.1007/s12032-022-01816-7. PMID:
36175598.
18. Yu F, Yu C, Li F, et al. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021; 6:307. DOI:
10.1038/s41392-021-00701-5. PMID:
34456337.
19. Pang Q, Hu W, Zhang X, Pang M. Wnt/beta-catenin signaling pathway-related proteins (DKK-3, beta-catenin, and c-MYC) are involved in prognosis of nasopharyngeal carcinoma. Cancer Biother Radiopharm. 2019; 34:436–43. DOI:
10.1089/cbr.2019.2771. PMID:
31025872.
20. Hu Z, Meng J, Cai H, et al. KIF3A inhibits nasopharyngeal carcinoma proliferation, migration and invasion by interacting with beta-catenin to suppress its nuclear accumulation. Am J Cancer Res. 2022; 12:5226–40. DOI:
10.21203/rs.3.rs-1031455/v1. PMID:
36504907.
21. Ou X, Zhang Y, Xu Y, et al. PICK1 inhibits the malignancy of nasopharyngeal carcinoma and serves as a novel prognostic marker. Cell Death Dis. 2024; 15:294. DOI:
10.1038/s41419-024-06687-6. PMID:
38664379.
22. Liu N, Yan M, Tao Q, et al. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer. 2023; 11:e007146. DOI:
10.1136/jitc-2023-007146. PMID:
37678921.
23. Jin PY, Zheng ZH, Lu HJ, et al. Roles of beta-catenin, TCF-4, and survivin in nasopharyngeal carcinoma: correlation with clinicopathological features and prognostic significance. Cancer Cell Int. 2019; 19:48. DOI:
10.1186/s12935-019-0764-7. PMID:
30867651.
24. Du L, Lee JH, Jiang H, et al. Beta-catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med. 2020; 217:e20191115. DOI:
10.1084/jem.20191115. PMID:
32860047.
25. Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/beta-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024; 81:79. DOI:
10.1007/s00018-023-05099-7. PMID:
38334836.
26. Delgado-Bellido D, Zamudio-Martinez E, Fernandez-Cortes M, et al. VE-cadherin modulates beta-catenin/TCF-4 to enhance vasculogenic mimicry. Cell Death Dis. 2023; 14:135. DOI:
10.1038/s41419-023-05666-7. PMID:
36797281.
28. Zhao G, Wang Q, Zhang Y, et al. DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer. Cell Death Dis. 2023; 14:1. DOI:
10.1038/s41419-022-05508-y. PMID:
36593242.
29. Wang J, Ge J, Wang Y, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 2022; 13:866. DOI:
10.1038/s41467-022-28479-2. PMID:
35165282.
30. Ge J, Wang J, Xiong F, et al. Epstein-Barr virus-encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021; 81:5074–88. DOI:
10.1158/0008-5472.can-20-4321. PMID:
34321242.
31. Kase K, Kondo S, Wakisaka N, et al. Epstein-Barr virus LMP1 induces soluble PD-L1 in nasopharyngeal carcinoma. Microorganisms. 2021; 9:603. DOI:
10.3390/microorganisms9030603. PMID:
33804064.
32. Wang FH, Wei XL, Feng J, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase II clinical trial (POLARIS-02). J Clin Oncol. 2021; 39:704–12. DOI:
10.1200/jco.20.02712. PMID:
33492986.
33. Mai HQ, Chen QY, Chen D, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial. Nat Med. 2021; 27:1536–43. DOI:
10.1038/s41591-021-01444-0. PMID:
34341578.
34. Weston WM, LeClair EE, Trzyna W, et al. Differential display identification of plunc, a novel gene expressed in embryonic palate, nasal epithelium, and adult lung. J Biol Chem. 1999; 274:13698–703. DOI:
10.1074/jbc.274.19.13698. PMID:
10224143.
35. Vitorino R, Lobo MJ, Ferrer-Correira AJ, et al. Identification of human whole saliva protein components using proteomics. Proteomics. 2004; 4:1109–15. DOI:
10.1002/pmic.200300638. PMID:
15048992.
36. Ghafouri B, Kihlstrom E, Stahlbom B, Tagesson C, Lindahl M. PLUNC (palate, lung and nasal epithelial clone) proteins in human nasal lavage fluid. Biochem Soc Trans. 2003; 31:810–4. DOI:
10.1042/bst0310810. PMID:
12887311.
37. Di YP, Harper R, Zhao Y, Pahlavan N, Finkbeiner W, Wu R. Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem. 2003; 278:1165–73. DOI:
10.1074/jbc.m210523200. PMID:
12409287.
38. Campos MA, Abreu AR, Nlend MC, Cobas MA, Conner GE, Whitney PL. Purification and characterization of PLUNC from human tracheobronchial secretions. Am J Respir Cell Mol Biol. 2004; 30:184–92. DOI:
10.1165/rcmb.2003-0142oc. PMID:
12920053.
39. Bartlett JA, Hicks BJ, Schlomann JM, Ramachandran S, Nauseef WM, McCray PB Jr. PLUNC is a secreted product of neutrophil granules. J Leukoc Biol. 2008; 83:1201–6. DOI:
10.1189/jlb.0507302. PMID:
18245229.
40. Huang H, Yao Y, Deng X, et al. Immunotherapy for nasopharyngeal carcinoma: current status and prospects (review). Int J Oncol. 2023; 63:97. DOI:
10.3892/ijo.2023.5545. PMID:
37417358.
42. Liu J, Xiao Q, Xiao J, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022; 7:3. DOI:
10.1038/s41392-021-00762-6. PMID:
34980884.
43. Wang D, Wu S, He J, et al. FAT4 overexpression promotes antitumor immunity by regulating the beta-catenin/STT3/PD-L1 axis in cervical cancer. J Exp Clin Cancer Res. 2023; 42:222. DOI:
10.1186/s13046-023-02758-2. PMID:
37658376.
44. Wang H, Luo K, Zhan Y, Peng S, Fan S, Wang W. Role of beta-catenin in PD-L1 expression of nasopharyngeal carcinoma. Heliyon. 2023; 9:e18130. DOI:
10.1016/j.heliyon.2023.e18130. PMID:
37496925.
45. Moy RH, Cole BS, Yasunaga A, et al. Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell. 2014; 158:764–77. DOI:
10.1016/j.cell.2014.06.023. PMID:
25126784.
46. Terrone S, Valat J, Fontrodona N, et al. RNA helicase-dependent gene looping impacts messenger RNA processing. Nucleic Acids Res. 2022; 50:9226–46. DOI:
10.1093/nar/gkac717. PMID:
36039747.
47. Suthapot P, Xiao T, Felsenfeld G, Hongeng S, Wongtrakoongate P. The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sci. 2022; 291:120298. DOI:
10.1016/j.lfs.2021.120298. PMID:
35007564.
48. Zhou HZ, Li F, Cheng ST, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 2022; 75:847–65. DOI:
10.1002/hep.32195. PMID:
34626132.
49. Li K, Mo C, Gong D, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of beta-catenin. Cancer Lett. 2017; 400:194–202. DOI:
10.1016/j.canlet.2017.02.029. PMID:
28259822.
50. Germann S, Gratadou L, Zonta E, et al. Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene. 2012; 31:4536–49. DOI:
10.1038/onc.2011.618. PMID:
22266867.
51. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV. The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol. 2004; 5:11. DOI:
10.1186/1471-2199-5-11. PMID:
15298701.
52. Alqahtani H, Gopal K, Gupta N, et al. DDX17 (P72), a Sox2 binding partner, promotes stem-like features conferred by Sox2 in a small cell population in estrogen receptor-positive breast cancer. Cell Signal. 2016; 28:42–50. DOI:
10.1016/j.cellsig.2015.11.004. PMID:
26569340.
53. Shin S, Rossow KL, Grande JP, Janknecht R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 2007; 67:7572–8. DOI:
10.1158/0008-5472.can-06-4652. PMID:
17699760.
54. Liu X, Li L, Geng C, et al. DDX17 promotes the growth and metastasis of lung adenocarcinoma. Cell Death Discov. 2022; 8:425. DOI:
10.1038/s41420-022-01215-x. PMID:
36273228.
55. Wortham NC, Ahamed E, Nicol SM, et al. The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene. 2009; 28:4053–64. DOI:
10.1038/onc.2009.261. PMID:
19718048.
56. Ku HC, Cheng CF. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Front Endocrinol (Lausanne). 2020; 11:556. DOI:
10.3389/fendo.2020.00556. PMID:
32922364.