2. Ly A, Ono JC, Hughes KS, Pitman MB, Balassanian R. Fine-needle aspiration biopsy of palpable breast masses: patterns of clinical use and patient experience. J Natl Compr Canc Netw. 2016; 14:527–36. DOI:
10.6004/jnccn.2016.0061. PMID:
27160231.
3. Farras Roca JA, Tardivon A, Thibault F, et al. Diagnostic performance of ultrasound-guided fine-needle aspiration of nonpalpable breast lesions in a multidisciplinary setting: the Institut Curie's experience. Am J Clin Pathol. 2017; 147:571–9. DOI:
10.1093/ajcp/aqx009. PMID:
28505308.
4. Ciatto S, Cariaggi P, Bulgaresi P, Confortini M, Bonardi R. Fine needle aspiration cytology of the breast: review of 9533 consecutive cases. Breast. 1993; 2:87–90. DOI:
10.1016/0960-9776(93)90163-a.
5. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW. Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med. 1998; 338:1089–96. DOI:
10.1056/nejm199804163381601. PMID:
9545356.
7. Willems SM, van Deurzen CH, van Diest PJ. Diagnosis of breast lesions: fine-needle aspiration cytology or core needle biopsy? A review. J Clin Pathol. 2012; 65:287–92. DOI:
10.1136/jclinpath-2011-200410. PMID:
22039282.
8. Nassar A. Core needle biopsy versus fine needle aspiration biopsy in breast: a historical perspective and opportunities in the modern era. Diagn Cytopathol. 2011; 39:380–8. DOI:
10.1002/dc.21433. PMID:
20949457.
9. Tikku G, Umap P. Comparative study of core needle biopsy and fine needle aspiration cytology in palpable breast lumps: scenario in developing nations. Turk Patoloji Derg. 2016; 32:1–7. DOI:
10.5146/tjpath.2015.01335. PMID:
26832175.
10. Mremi A, Pallangyo A, Mshana T, et al. The role of clinical breast examination and fine needle aspiration cytology in early detection of breast cancer: a cross-sectional study nested in a cohort in a low-resource setting. Womens Health (Lond). 2024; 20:17455057241250131. DOI:
10.1177/17455057241250131. PMID:
38725253.
11. Khorsandi N, Balassanian R, Vohra P. Fine needle aspiration biopsy in low- and middle-income countries. Diagn Cytopathol. 2024; 52:426–32. DOI:
10.1002/dc.25317. PMID:
38576060.
12. Uzan C, Andre F, Scott V, et al. Fine-needle aspiration for nucleic acid-ased molecular analyses in breast cancer. Cancer. 2009; 117:32–9. DOI:
10.1002/cncy.20008. PMID:
19347827.
13. Lee HB, Joung JG, Kim J, et al. The use of FNA samples for whole-exome sequencing and detection of somatic mutations in breast cancer surgical specimens. Cancer Cytopathol. 2015; 123:669–77. DOI:
10.1002/cncy.21599. PMID:
26265110.
14. Islam R, Tarique M. Artificial intelligence (AI) and nuclear features from the fine needle aspirated (FNA) tissue samples to recognize breast cancer. J Imaging. 2024; 10:201. DOI:
10.3390/jimaging10080201. PMID:
39194990.
15. Martin HE, Ellis EB. Aspiration biopsy. Surg Gyn Obst. 1934; 59:578–89.
17. Masood S. Core needle biopsy versus fine-needle aspiration biopsy: are there similar sampling and diagnostic issues? Breast J. 2003; 9:145–6. DOI:
10.1046/j.1524-4741.2003.09301.x. PMID:
12752620.
18. Cobb CJ, Raza AS. Obituary: "alas poor FNA of breast: we knew thee well!". Diagn Cytopathol. 2005; 32:1–4. DOI:
10.1002/dc.20189. PMID:
15584039.
19. Pinto DG, Tse G, Tan PH, Schmitt F. Aspiration techniques. In : Tse G, Tan PH, Schmitt F, editors. Fine needle aspiration cytology of the breast: atlas of cyto-histologic correlates. Berlin: Springer;2023. p. 21–31.
20. Field AS, Raymond WA, Richard MT, et al. Introduction and overview. In: Field AS, Raymond WA, Schmitt F, eds. The International Academy of Cytology Yokohama System for reporting breast fine needle aspiration biopsy cytopathology, Berlin: Springer;2020. p. 1–9.
21. Moschetta M, Telegrafo M, Carluccio DA, et al. Comparison between fine needle aspiration cytology (FNAC) and core needle biopsy (CNB) in the diagnosis of breast lesions. G Chir. 2014; 35:171–6. DOI:
10.11138/gchir/2014.35.7.171. PMID:
25174291.
24. El Chamieh C, Vielh P, Chevret S. Statistical methods for evaluating the fine needle aspiration cytology procedure in breast cancer diagnosis. BMC Med Res Methodol. 2022; 22:40. DOI:
10.1186/s12874-022-01506-y. PMID:
35125097.
25. Field AS, Raymond WA, Rickard M, Schmitt F. Breast fine needle aspiration biopsy cytology: the potential impact of the International Academy of Cytology Yokohama System for reporting breast fine needle aspiration biopsy cytopathology and the use of rapid on-site evaluation. J Am Soc Cytopathol. 2020; 9:103–11. DOI:
10.1016/j.jasc.2019.10.004. PMID:
32044283.
26. Hoorntje LE, Schipper ME, Kaya A, Verkooijen HM, Klinkenbijl JG, Borel Rinkes IH. Tumour cell displacement after 14G breast biopsy. Eur J Surg Oncol. 2004; 30:520–5. DOI:
10.1016/j.ejso.2004.03.001. PMID:
15135480.
27. Kazi M, Parshad R, Seenu V, Mathur S, Haresh KP. Fine-needle aspiration cytology (FNAC) in breast cancer: a reappraisal based on retrospective review of 698 cases. World J Surg. 2017; 41:1528–33. DOI:
10.1007/s00268-017-3906-x. PMID:
28160027.
28. Litherland JC. Should fine needle aspiration cytology in breast assessment be abandoned? Clin Radiol. 2002; 57:81–4. DOI:
10.1053/crad.2001.0875. PMID:
11977938.
29. Field AS, Raymond WA, Rickard M, et al. The International Academy of Cytology Yokohama System for reporting breast fine-needle aspiration biopsy cytopathology. Acta Cytol. 2019; 63:257–73. DOI:
10.1159/000501055. PMID:
31112942.
30. Nigam JS, Kumar T, Bharti S, Sinha R, Bhadani PP. The International Academy of Cytology standardized reporting of breast fine-needle aspiration biopsy cytology: a 2 year's retrospective study with application of categories and their assessment for risk of malignancy. Cytojournal. 2021; 18:27. DOI:
10.25259/cytojournal_43_2020. PMID:
34876918.
31. Agrawal N, Kothari K, Tummidi S, Sood P, Agnihotri M, Shah V. Fine-needle aspiration biopsy cytopathology of breast lesions using the International Academy of Cytology Yokohama System and rapid on-site evaluation: a single-institute experience. Acta Cytol. 2021; 65:463–77. DOI:
10.1159/000518375. PMID:
34515039.
32. Sundar PM, Shanmugasundaram S, Nagappan E. The role of the IAC Yokohama System for reporting breast fine needle aspiration biopsy and the ACR Breast Imaging-Reporting and Data System in the evaluation of breast lesions. Cytopathology. 2022; 33:185–95. DOI:
10.1111/cyt.13085. PMID:
34866246.
33. Agrawal S, Anthony ML, Paul P, et al. Prospective evaluation of accuracy of fine-needle aspiration biopsy for breast lesions using the International Academy of Cytology Yokohama System for reporting breast cytopathology. Diagn Cytopathol. 2021; 49:805–10. DOI:
10.1002/dc.24743. PMID:
33755356.
34. Wong YP, Vincent James EP, Mohammad Azhar MA, et al. Implementation of the International Academy of Cytology Yokohama standardized reporting for breast cytopathology: an 8-year retrospective study. Diagn Cytopathol. 2021; 49:718–26. DOI:
10.1002/dc.24731. PMID:
33629823.
35. Dixit N, Trivedi S, Bansal VK. A retrospective analysis of 512 cases of breast fine needle aspiration cytology utilizing the recently proposed IAC Yokohama System for reporting breast cytopathology. Diagn Cytopathol. 2021; 49:1022–31. DOI:
10.1002/dc.24808. PMID:
34133084.
36. Ahuja S, Malviya A. Categorization of breast fine needle aspirates using the International Academy of Cytology Yokohama System along with assessment of risk of malignancy and diagnostic accuracy in a tertiary care centre. J Cytol. 2021; 38:158–63. DOI:
10.4103/joc.joc_31_21. PMID:
34703093.
37. Marabi M, Aphivatanasiri C, Jamidi SK, et al. The International Academy of Cytology Yokohama System for Reporting Breast Cytopathology showed improved diagnostic accuracy. Cancer Cytopathol. 2021; 129:852–64. DOI:
10.1002/cncy.22451. PMID:
34029453.
38. Oosthuizen M, Razack R, Edge J, Schubert PT. Classification of male breast lesions according to the IAC Yokohama System for reporting breast cytopathology. Acta Cytol. 2021; 65:132–9. DOI:
10.1159/000512041. PMID:
33333512.
39. Agarwal A, Singh D, Mehan A, et al. Accuracy of the International Academy of Cytology Yokohama System of breast cytology reporting for fine needle aspiration biopsy of the breast in a dedicated breast care setting. Diagn Cytopathol. 2021; 49:195–202. DOI:
10.1002/dc.24632. PMID:
33017520.
40. De Rosa F, Migliatico I, Vigliar E, et al. The continuing role of breast fine-needle aspiration biopsy after the introduction of the IAC Yokohama System for reporting breast fine needle aspiration biopsy cytopathology. Diagn Cytopathol. 2020; 48:1244–53. DOI:
10.1002/dc.24559. PMID:
32749785.
41. Apuroopa M, Chakravarthy VK, Rao DR. Application of Yokohama System for reporting breast fine needle aspiration cytology in correlation with histopathological and radiological findings. Ann Pathol Lab Med. 2020; 7:A210–5. DOI:
10.21276/apalm.2784.
42. Wong S, Rickard M, Earls P, Arnold L, Bako B, Field AS. The International Academy of Cytology Yokohama System for reporting breast fine needle aspiration biopsy cytopathology: a single institutional retrospective study of the application of the system categories and the impact of rapid onsite evaluation. Acta Cytol. 2019; 63:280–91. DOI:
10.1159/000500191. PMID:
31108486.
43. McHugh KE, Bird P, Sturgis CD. Concordance of breast fine needle aspiration cytology interpretation with subsequent surgical pathology: an 18-year review from a single sub-Saharan African institution. Cytopathology. 2019; 30:519–25. DOI:
10.1111/cyt.12696. PMID:
30929288.
44. Montezuma D, Malheiros D, Schmitt FC. Breast fine needle aspiration biopsy cytology using the newly proposed IAC Yokohama System for reporting breast cytopathology: the experience of a single institution. Acta Cytol. 2019; 63:274–9. DOI:
10.1159/000492638.
45. Nikas IP, Vey JA, Proctor T, et al. The use of the International Academy of Cytology Yokohama System for reporting breast fine-needle aspiration biopsy. Am J Clin Pathol. 2023; 159:138–45. DOI:
10.1093/ajcp/aqac132. PMID:
36370120.
46. Layfield LJ, Wang G, Yang ZJ, Gomez-Fernandez C, Esebua M, Schmidt RL. Interobserver agreement for the International Academy of Cytology Yokohama System for reporting breast fine-needle aspiration biopsy cytopathology. Acta Cytol. 2020; 64:413–9. DOI:
10.1159/000506757. PMID:
32428908.
47. Folarin O, Kim D, Gokozan HN, et al. Interobserver agreement and risk of malignancy using the International Academy of Cytology Yokohama System for reporting breast FNA biopsy in a liquid-based exclusive cohort. Cancer Cytopathol. 2024; 132:320–6. DOI:
10.1002/cncy.22798. PMID:
38410851.
48. Hoda RS, Brachtel EF. International Academy of Cytology Yokohama System for reporting breast fine-needle aspiration biopsy cytopathology: a review of predictive values and risks of malignancy. Acta Cytol. 2019; 63:292–301. DOI:
10.1159/000500704. PMID:
31141809.
49. VandenBussche CJ, Baloch ZW. The cytologic diagnosis of "atypical": criteria and controversies. Diagn Cytopathol. 2022; 50:143–5. DOI:
10.1002/dc.24944. PMID:
35188718.
50. Tejeswini V, Chaitra B, Renuka IV, Laxmi K, Ramya P, Sowjanya KKS. Effectuation of International Academy of Cytology Yokahama reporting system of breast cytology to assess malignancy risk and accuracy. J Cytol. 2021; 38:69–73. DOI:
10.4103/joc.joc_20_20. PMID:
34321772.
51. Sarangi S, Rao M, Elhence PA, et al. Risk stratification of breast fine-needle aspiration biopsy specimens performed without radiologic guidance by application of the International Academy of Cytology Yokohama System for reporting breast fine-needle aspiration cytopathology. Acta Cytol. 2021; 65:483–93. DOI:
10.1159/000518790. PMID:
34535580.
52. Gomes Pinto D, Schmitt FC. Overcoming pitfalls in breast fine-needle aspiration cytology: a practical review. Acta Cytol. 2024; 68:206–18. DOI:
10.1159/000539692. PMID:
38861943.
53. Cai G, Adeniran AJ. Overview. In : Cai G, Adeniran AJ, editors. Rapid on-site evaluation (ROSE). Berlin: Springer;2019. p. 3–11.
54. Hernandez A, Brandler TC, Cangiarella JF. Breast. In : Cai G, Adeniran AJ, editors. Rapid on-site evaluation (ROSE). Berlin: Springer;2019. p. 61–92.
55. Schoellnast H, Komatz G, Bisail H, et al. CT-guided biopsy of lesions of the lung, liver, pancreas or of enlarged lymph nodes: value of additional fine needle aspiration (FNA) to core needle biopsy (CNB) in an offsite pathologist setting. Acad Radiol. 2010; 17:1275–81. DOI:
10.1016/j.acra.2010.05.015. PMID:
20621527.
56. Silverman JF, Finley JL, O'Brien KF, et al. Diagnostic accuracy and role of immediate interpretation of fine needle aspiration biopsy specimens from various sites. Acta Cytol. 1989; 33:791–6. PMID:
2686322.
57. Nasuti JF, Gupta PK, Baloch ZW. Diagnostic value and cost-effectiveness of on-site evaluation of fine-needle aspiration specimens: review of 5,688 cases. Diagn Cytopathol. 2002; 27:1–4. DOI:
10.1002/dc.10065. PMID:
12112806.
58. Suciu V, El Chamieh C, Soufan R, et al. Real-world diagnostic accuracy of the On-Site Cytopathology Advance Report (OSCAR) procedure performed in a multidisciplinary one-stop breast clinic. Cancers (Basel). 2023; 15:4967. DOI:
10.3390/cancers15204967. PMID:
37894334.
59. Bharti JN, Nigam JS, Rath A, Pradeep I. Insufficient/inadequate category in breast cytology: are the standardized guidelines of rapid on-site evaluation available to reduce its rate? Diagn Cytopathol. 2023; 51:321–4. DOI:
10.1002/dc.25126. PMID:
36932831.
60. Poole GH, Willsher PC, Pinder SE, Robertson JF, Elston CW, Blamey RW. Diagnosis of breast cancer with core-biopsy and fine needle aspiration cytology. Aust N Z J Surg. 1996; 66:592–4. DOI:
10.1111/j.1445-2197.1996.tb00825.x. PMID:
8859156.
61. Salami N, Hirschowitz SL, Nieberg RK, Apple SK. Triple test approach to inadequate fine needle aspiration biopsies of palpable breast lesions. Acta Cytol. 1999; 43:339–43. DOI:
10.1159/000331078. PMID:
10349359.
62. Ibrahim AE, Bateman AC, Theaker JM, et al. The role and histological classification of needle core biopsy in comparison with fine needle aspiration cytology in the preoperative assessment of impalpable breast lesions. J Clin Pathol. 2001; 54:121–5. DOI:
10.1136/jcp.54.2.121. PMID:
11215280.
63. Joudeh AA, Shareef SQ, Al-Abbadi MA. Fine-needle aspiration followed by core-needle biopsy in the same setting: modifying our approach. Acta Cytol. 2016; 60:1–13. DOI:
10.1159/000444386.
64. Sustova P, Klijanienko J. Value of combined use of fine-needle aspiration and core needle biopsy in palpable breast tumors performed by pathologist: Institut Curie experience. Diagn Cytopathol. 2020; 48:71–7. DOI:
10.1002/dc.24311. PMID:
31515971.
65. Li Z, Souers RJ, Tabbara SO, Natale KE, Nguyen LN, Booth CN. Breast fine-needle aspiration practice in 2019: results of a College of American Pathologists national survey. Arch Pathol Lab Med. 2021; 145:825–33. DOI:
10.5858/arpa.2020-0408-cp. PMID:
33351901.
66. Gerhard R, Schmitt FC. Liquid-based cytology in fine-needle aspiration of breast lesions: a review. Acta Cytol. 2014; 58:533–42. DOI:
10.1159/000362805. PMID:
25115652.
67. Ryu HS, Park IA, Park SY, Jung YY, Park SH, Shin HC. A pilot study evaluating liquid-based fine needle aspiration cytology of breast lesions: a cytomorphological comparison of SurePath(R) liquid-based preparations and conventional smears. Acta Cytol. 2013; 57:391–9. DOI:
10.1159/000351306. PMID:
23860283.
68. Silva E, Meschter S, Tan MP. Breast biopsy techniques in a global setting-clinical practice review. Transl Breast Cancer Res. 2023; 4:14. DOI:
10.21037/tbcr-23-12. PMID:
38751462.
69. Chauhan D, Sahu N, Sahoo SR, Senapati U. Accuracy of cytological grading in the carcinoma breast and its correlation with pathological prognostic parameters. J Cancer Res Ther. 2023; 19:1956–61. DOI:
10.4103/jcrt.jcrt_788_22. PMID:
38376303.
70. Bozzetti C, Nizzoli R, Guazzi A, et al. HER-2/neu amplification detected by fluorescence in situ hybridization in fine needle aspirates from primary breast cancer. Ann Oncol. 2002; 13:1398–403. DOI:
10.1093/annonc/mdf217. PMID:
12196365.
71. Konofaos P, Kontzoglou K, Georgoulakis J, et al. The role of ThinPrep cytology in the evaluation of estrogen and progesterone receptor content of breast tumors. Surg Oncol. 2006; 15:257–66. DOI:
10.1016/j.suronc.2007.03.004. PMID:
17451941.
72. Durgapal P, Mathur SR, Kalamuddin M, et al. Assessment of Her-2/neu status using immunocytochemistry and fluorescence in situ hybridization on fine-needle aspiration cytology smears: experience from a tertiary care centre in India. Diagn Cytopathol. 2014; 42:726–31. DOI:
10.1002/dc.23088. PMID:
24376261.
73. Vohra P, Buelow B, Chen YY, et al. Estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast cancer FNA cell blocks and paired histologic specimens: a large retrospective study. Cancer Cytopathol. 2016; 124:828–35. DOI:
10.1002/cncy.21745. PMID:
27315045.
74. Torous VF, Cuda JM, Manucha V, et al. Cell blocks in cytology: review of preparation methods, advantages, and limitations. J Am Soc Cytopathol. 2023; 12:77–88. DOI:
10.1016/j.jasc.2022.11.003. PMID:
36528492.
75. Jamidi SK, Li JJX, Aphivatanasiri C, et al. Papillary lesions of the breast: a systematic evaluation of cytologic parameters. Cancer Cytopathol. 2021; 129:649–61. DOI:
10.1002/cncy.22412. PMID:
33561323.
76. van Essen HF, Verdaasdonk MA, Elshof SM, de Weger RA, van Diest PJ. Alcohol based tissue fixation as an alternative for formaldehyde: influence on immunohistochemistry. J Clin Pathol. 2010; 63:1090–4. DOI:
10.1136/jcp.2010.079905. PMID:
20978021.
77. Pinto D, Schmitt FC. Immunohistochemistry applied to breast cytological material. Pathobiology. 2022; 89:343–58. DOI:
10.1159/000522542. PMID:
35367980.
78. Dong J, Ly A, Arpin R, Ahmed Q, Brachtel E. Breast fine needle aspiration continues to be relevant in a large academic medical center: experience from Massachusetts General Hospital. Breast Cancer Res Treat. 2016; 158:297–305. DOI:
10.1007/s10549-016-3886-9. PMID:
27383478.
79. Kumar SK, Gupta N, Rajwanshi A, Joshi K, Singh G. Immunochemistry for oestrogen receptor, progesterone receptor and HER2 on cell blocks in primary breast carcinoma. Cytopathology. 2012; 23:181–6. DOI:
10.1111/j.1365-2303.2011.00853.x. PMID:
21375607.
80. Puccetti M, Ravaioli S, Tumedei MM, et al. Are fine-needle aspiration biopsy-derived cell blocks a useful surrogate for tissue samples in breast cancer? Histopathology. 2018; 73:801–8. DOI:
10.1111/his.13694. PMID:
29944734.
81. Briffod M, Hacene K, Le Doussal V. Immunohistochemistry on cell blocks from fine-needle cytopunctures of primary breast carcinomas and lymph node metastases. Mod Pathol. 2000; 13:841–50. DOI:
10.1038/modpathol.3880149. PMID:
10955449.
82. Singh S, Shukla S, Singh A, Acharya S, Kadu RP, Bhake A. Comparison of estrogen and progesterone receptor status in tumor mass and axillary lymph node metastasis in patients with carcinoma breast. Int J Appl Basic Med Res. 2020; 10:117–21. PMID:
32566528.
83. Baros IV, Tanaskovic N, Pellas U, Eri Z, Tadic Latinovic L, Tot T. Internodal HER2 heterogeneity of axillary lymph node metastases in breast cancer patients. Bosn J Basic Med Sci. 2019; 19:242–8. PMID:
30957723.
84. Pareja F, Murray MP, Jean RD, et al. Cytologic assessment of estrogen receptor, progesterone receptor, and HER2 status in metastatic breast carcinoma. J Am Soc Cytopathol. 2017; 6:33–40. DOI:
10.1016/j.jasc.2016.10.001. PMID:
28529880.
85. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996; 14:2584–9. DOI:
10.1200/jco.1996.14.9.2584. PMID:
8823339.
86. Kane G, Fleming C, Heneghan H, et al. False-negative rate of ultrasound-guided fine-needle aspiration cytology for identifying axillary lymph node metastasis in breast cancer patients. Breast J. 2019; 25:848–52. DOI:
10.1111/tbj.13402. PMID:
31197915.
87. Desai N, Connelly CF, Sung S, Cimic A, Baskota SU. Interobserver variability in HER-2 immunostaining interpretation of metastatic HER2 low breast cancers in cytology specimens. Diagn Cytopathol. 2024; 52:722–30. DOI:
10.1002/dc.25392. PMID:
39126228.
88. Pisapia P, Pepe F, Sgariglia R, et al. Next generation sequencing in cytology. Cytopathology. 2021; 32:588–95. DOI:
10.1111/cyt.12974. PMID:
33792981.
89. Rekhtman N, Roy-Chowdhuri S. Cytology specimens: a goldmine for molecular testing. Arch Pathol Lab Med. 2016; 140:1189–90. DOI:
10.5858/arpa.2016-0379-ed. PMID:
27788046.
90. Vishnubhotla PS. Molecular testing of cytology specimens: are we ready for the new era? Cancer Cytopathol. 2016; 124:9–10. DOI:
10.1002/cncy.21665. PMID:
26682767.
91. Symmans WF, Ayers M, Clark EA, et al. Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer. 2003; 97:2960–71. DOI:
10.1002/cncr.11435. PMID:
12784330.
92. Roy-Chowdhuri S, Chen H, Singh RR, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017; 30:499–508. DOI:
10.1038/modpathol.2016.228. PMID:
28084342.
93. Park HE, Han D, Lee JS, et al. Comparison of breast fine-needle aspiration cytology and tissue sampling for high-throughput proteomic analysis and cancer biomarker detection. Pathobiology. 2024; 91:359–69. DOI:
10.1159/000539478. PMID:
38815563.
94. Hoshino A, Oana Y, Ohi Y, et al. Using the DNA integrity number to analyze DNA quality in specimens collected from liquid-based cytology after fine-needle aspiration of breast tumors and lesions. Acta Cytol. 2024; 68:145–52. DOI:
10.1159/000538071. PMID:
38555634.
95. Akahane T, Isochi-Yamaguchi T, Hashiba-Ohnuki N, et al. Cancer gene analysis of liquid-based cytology specimens using next-generation sequencing: a technical report of bimodal DNA- and RNA-based panel application. Diagn Cytopathol. 2023; 51:493–500. DOI:
10.1002/dc.25149. PMID:
37162026.
96. Aydin Mericoz C, Eren OC, Kulac I, Firat P. Fusion of old and new: employing touch imprint slides for next generation sequencing in solid tumors. Diagn Cytopathol. 2024; 52:264–70. DOI:
10.1002/dc.25283. PMID:
38339821.
97. Martelotto LG, De Filippo MR, Ng CK, et al. Genomic landscape of adenoid cystic carcinoma of the breast. J Pathol. 2015; 237:179–89. DOI:
10.1002/path.4573. PMID:
26095796.
98. D'Alfonso TM, Mosquera JM, MacDonald TY, et al.
MYB-NFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features. Hum Pathol. 2014; 45:2270–80. DOI:
10.1016/j.humpath.2014.07.013. PMID:
25217885.
99. Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int. 2015; 7:23–33. DOI:
10.2147/plmi.s59826.
100. Ren F, Li H, Yang W, et al. Viability of whole-slide imaging for intraoperative touch imprint cytological diagnosis of axillary sentinel lymph nodes in breast cancer patients. Diagn Cytopathol. 2024; 53:18–26. DOI:
10.1002/dc.25401. PMID:
39206735.
101. Liu Y, Kohlberger T, Norouzi M, et al. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019; 143:859–68. DOI:
10.5858/arpa.2018-0147-oa. PMID:
30295070.
102. Sandbank J, Bataillon G, Nudelman A, et al. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. NPJ Breast Cancer. 2022; 8:129. DOI:
10.1038/s41523-022-00496-w. PMID:
36473870.
103. Binder A, Bockmayr M, Hagele M, et al. Morphological and molecular breast cancer profiling through explainable machine learning. Nat Mach Intell. 2021; 3:355–66. DOI:
10.1038/s42256-021-00303-4.