Ann Lab Med.  2025 Jan;45(1):44-52. 10.3343/alm.2024.0089.

Assessing the Relevance of Non-Molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing

Affiliations
  • 1Laboratorio de Genética Hematológica, Instituto de Medicina Experimental (IMEX–CONICET)/Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina
  • 2Hospital Universitario Privado de Córdoba, Córdoba, Argentina; 3 Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
  • 3Laboratorio de Especialidades Bioquímicas, Bahía Blanca, Argentina
  • 4Hospital de Clínicas “Dr. Manuel Quintela,” Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
  • 5Hospital de Alta Complejidad “El Cruce Nestor Kirchner,” Florencio Varela, Argentina
  • 6Fundaleu, Ciudad de Buenos Aires, Argentina
  • 7University Hospital of Santiago de Compostela, IDIS, Spain

Abstract

Background
The Molecular International Prognostic Scoring System (IPSS-M) has improved the prediction of clinical outcomes for myelodysplastic syndromes (MDS). The Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinical parameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, we validated the IPSS-M and other molecular prognostic models and compared them with the established IPSS-R and AIPSS-MDS models using data from South American patients.
Methods
Molecular and clinical data from 145 patients with MDS and 37 patients with MDS/myeloproliferative neoplasms were retrospectively analyzed.
Results
Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predicted overall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) and Munich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognostic discrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC: 0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplified low- and high-risk groups for clinical management, after restratifying from IPSS-R (57% and 32%, respectively, hazard ratio [HR]: 2.8; P = 0.002) to IPSS-M, 12.6% of patients were upstaged, and 5% were downstaged (HR: 2.9; P = 0.001). The AIPSS-MDS recategorized 51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6; P < 0.001), consistent with most patients requiring disease-modifying therapy.
Conclusions
The IPSS-M and AIPSS-MDS models provide more accurate survival prognoses than the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid option for assessing risks for all patients with MDS, especially in resource-limited centers where molecular testing is not currently a standard clinical practice.

Keyword

Artificial Intelligence Prognostic Scoring System; Model; Molecular International Prognostic Scoring System; Myelodysplastic syndrome; Prognostic; Risk assessment; South America; Survival analysis; Therapy

Figure

  • Fig. 1 Clinical assessment of IPSS-R and IPSS-M for 182 patients. (A) Sankey plot for restratification from the IPSS-R to the IPSS-M model using five risk groups. (B) Kaplan–Meier probability estimates of OS across the IPSS-R (top) and IPSS-M (bottom) categories. The dashed gray lines represent the median values. The global P was calculated using the log-rank test. Each HR and associated P were calculated by setting the low-risk group as the reference. Abbreviations: IPSS-R, International Prognostic Scoring System, revised version; IPSS-M, Molecular International Prognostic Scoring System; OS, overall survival; HR, hazard ratio; NE, not evaluable; mo, months.

  • Fig. 2 Prognostic power of several models for OS. The prognostic power was assessed based on (A) the AUC or (B) Harrell’s C-index determined with the IPSS-M, IPSS-R, AIPSS-MDS, EuroMDS, and MLL models. In panel B, the red line represents the risk encoded as categories using five risk categories (after merging the moderate-risk groups) for the IPSS-R and IPSS-M models and the quintiles using risk scores obtained from the original training set for the AIPSS-MDS model. The blue line represents a continuous score. Abbreviations: OS, overall survival; AUC, area under the curve; C, concordance; IPSS-M, Molecular International Prognostic Scoring System; IPSS-R, International Prognostic Scoring System, revised version; AIPSS-MDS, Artificial Intelligence Prognostic Scoring System for MDS; EuroMDS, European MDS; MLL, Munich Leukemia Laboratory.

  • Fig. 3 Variant distribution, restratification, and OS analysis with different risk models. (A, C) Violin plots showing the number of variants as the risk groups changed when switching from the IPSS-R model to (A) the IPSS-M model or (C) the AIPSS-MDS model, affecting patient therapy. (B) Sankey plot depicting the percentage of patients restratified among the models. (D) Kaplan–Meier probability estimates of the OS for low- and high-risk groups of patients with available survival data. The AIPSS-MDS risk groups were defined based on the median risk score from the original training set by Mosquera, et al. [15]. Risk groups were defined using a risk-score cut-off of 3.5 for IPSS-R and a cut-off of 0 for IPSS-M. Each HR and associated P were calculated by setting the low-risk group as the reference. Abbreviations: OS, overall survival; IPSS-R, International Prognostic Scoring System, revised version; IPSS-M, Molecular International Prognostic Scoring System; AIPSS-MDS, Artificial Intelligence Prognostic Scoring System for MDS; HR, hazard ratio; NA, not available; mo, months.


Reference

References

1. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. 2022; The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–19. DOI: 10.1038/s41375-022-01613-1. PMID: 35732831. PMCID: PMC9252913.
2. García-Manero G. 2023; Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 98:1307–25. DOI: 10.1002/ajh.26984. PMID: 37288607.
3. Cazzola M. 2020; Myelodysplastic syndromes. N Engl J Med. 383:1358–74. DOI: 10.1056/NEJMra1904794. PMID: 32997910.
4. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. 2012; Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120:2454–65. DOI: 10.1182/blood-2012-03-420489. PMID: 22740453. PMCID: PMC4425443.
5. Della Porta MG, Tuechler H, Malcovati L, Schanz J, Sanz G, Garcia-Manero G, et al. 2015; Validation of WHO classification-based Prognostic Scoring System (WPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International Working Group for Prognosis in Myelodysplasia (IWG-PM). Leukemia. 29:1502–13. DOI: 10.1038/leu.2015.55. PMID: 25721895.
6. Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, et al. 2021; Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 39:1223–33. DOI: 10.1200/JCO.20.01659. PMID: 33539200. PMCID: PMC8078359.
7. Nazha A, Komrokji R, Meggendorfer M, Jia X, Radakovich N, Shreve J, et al. 2021; Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol. 39:3737–46. DOI: 10.1200/JCO.20.02810. PMID: 34406850. PMCID: PMC8601291.
8. Huber S, Haferlach T, Müller H, Meggendorfer M, Hutter S, Hoermann G, et al. 2023; MDS subclassification-do we still have to count blasts? Leukemia. 37:942–5. DOI: 10.1038/s41375-023-01855-7. PMID: 36813994. PMCID: PMC10079547.
9. Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE, Nannya Y, et al. 2022; Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 1:EVIDoa2200008. DOI: 10.1056/EVIDoa2200008. PMID: 38319256.
10. Wu J, Zhang Y, Qin T, Xu Z, Qu S, Pan L, et al. 2022; IPSS-M has greater survival predictive accuracy compared with IPSS-R in persons ≥60 years with myelodysplastic syndromes. Exp Hematol Oncol. 11:73. DOI: 10.1186/s40164-022-00328-4. PMID: 36253799. PMCID: PMC9578211. PMID: c7f897d94a284e459cbfe8f2378916a3.
11. Lee WH, Tsai MT, Tsai CH, Tien FM, Lo MY, Tseng MH, et al. 2023; Validation of the molecular international prognostic scoring system in patients with myelodysplastic syndromes defined by international consensus classification. Blood Cancer J. 13:120. DOI: 10.1038/s41408-023-00894-8. PMID: 37558665. PMCID: PMC10412560. PMID: 7479abc62de646a98b87cad2d66ca5e0.
12. Ma J, Gu Y, Wei Y, Wang X, Wang P, Song C, et al. 2023; Evaluation of new IPSS-Molecular model and comparison of different prognostic systems in patients with myelodysplastic syndrome. Blood Sci. 5:187–95. DOI: 10.1097/BS9.0000000000000166. PMID: 37546714. PMCID: PMC10400062. PMID: 081171724fcc46678a096595cb34e92b.
13. Sauta E, Robin M, Bersanelli M, Travaglino E, Meggendorfer M, Zhao LP, et al. 2023; Real-world validation of molecular international prognostic scoring system for myelodysplastic syndromes. J Clin Oncol. 41:2827–42. DOI: 10.1200/JCO.22.01784. PMID: 36930857. PMCID: PMC10414702.
14. Yang T, Jiang B, Luo Y, Zhao Y, Ouyang G, Yu J, et al. 2023; Comparison of the prognostic predictive value of Molecular International Prognostic Scoring System and Revised International Prognostic Scoring System in patients undergoing allogeneic hematopoietic stem cell transplantation for myelodysplastic neoplasms. Am J Hematol. 98:E391–4. DOI: 10.1002/ajh.27099. PMID: 37728241.
15. Mosquera Orgueira A, Perez Encinas MM, Diaz Varela NA, Mora E, Díaz-Beyá M, Montoro MJ, et al. 2023; Machine learning improves risk stratification in myelodysplastic neoplasms: an analysis of the Spanish group of myelodysplastic syndromes. Hemasphere. 7:e961. DOI: 10.1097/HS9.0000000000000961. PMID: 37841754. PMCID: PMC10569758. PMID: 8be230579faa4438bea41bbeeacb89de.
16. Xie Z, Chen EC, Stahl M, Zeidan AM. 2023; Prognostication in myelodysplastic syndromes (neoplasms): molecular risk stratification finally coming of age. Blood Rev. 59:101033. DOI: 10.1016/j.blre.2022.101033. PMID: 36357283.
17. Zamanillo I, Poza M, Ayala R, Rapado I, Martinez-Lopez J, Cedena MT. 2023; Impact of IPSS-M implementation in real-life clinical practice. Front Oncol. 13:1199023. DOI: 10.3389/fonc.2023.1199023. PMID: 37274292. PMCID: PMC10233005. PMID: e6bb84adf8b34de0a3d77b604aba12c2.
18. Jáuregui SN, Palomo L, Pérez A, Tazón B, Montoro MJ, Blanco A, et al. 2022; IPSS-M applicability and clinical impact in decision-making process in real-life clinical practice. Blood. 140(S1):6966–7. DOI: 10.1182/blood-2022-168705.
19. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. 2020; Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 26:1549–56. DOI: 10.1038/s41591-020-1008-z. PMID: 32747829. PMCID: PMC8381722.
20. Ye W, Ma M, Wu X, Deng J, Liu X, Zheng X, et al. 2023; Prognostic significance of KMT2A-PTD in patients with acute myeloid leukaemia: a systematic review and meta-analysis. BMJ Open. 13:e062376. DOI: 10.1136/bmjopen-2022-062376. PMID: 36725100. PMCID: PMC9896228. PMID: 791f271d42074da09499a55542d0453e.
21. Choi SM, Dewar R, Burke PW, Shao L. 2018; Partial tandem duplication of KMT2A (MLL) may predict a subset of myelodysplastic syndrome with unique characteristics and poor outcome. Haematologica. 103:e131–4. DOI: 10.3324/haematol.2017.185249. PMID: 29351983. PMCID: PMC5830365. PMID: d2cd650185d5436e879d0f5f850d4be7.
22. Baer C, Huber S, Hutter S, Meggendorfer M, Nadarajah N, Walter W, et al. 2023; Risk prediction in MDS: independent validation of the IPSS-M-ready for routine? Leukemia. 37:938–41. DOI: 10.1038/s41375-023-01831-1. PMID: 36725896. PMCID: PMC10079546.
23. Valcárcel D, Sanz G, Ortega M, Nomdedeu B, Luño E, Diez-Campelo M, et al. 2015; Use of newer prognostic indices for patients with myelodysplastic syndromes in the low and intermediate-1 risk categories: a population-based study. Lancet Haematol. 2:e260–6. DOI: 10.1016/S2352-3026(15)00067-8. PMID: 26688236.
24. DiNardo CD, Venugopal S, Lachowiez C, Takahashi K, Loghavi S, Montalban-Bravo G, et al. 2023; Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome. Blood Adv. 7:2378–87. DOI: 10.1182/bloodadvances.2022008378. PMID: 35973199. PMCID: PMC10220255.
25. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. 2022; International Consensus Classification of Myeloid neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 140:1200–28. DOI: 10.1182/blood.2022015850. PMID: 35767897. PMCID: PMC9479031.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr