5. Duan X, Zhang M, Liu Y, Zheng W, Lim CY, Kim S, et al. 2024; Next-generation patient-based real-time quality control models. Ann Lab Med. 44:385–91. DOI:
10.3343/alm.2024.0053. PMID:
38835211. PMCID:
PMC11169771.
10. Redmon J, Divvala S, Girshick R, Farhadi A. 2016; You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779–88. DOI:
10.1109/CVPR.2016.91.
12. Hunter JD. 2007; Matplotlib: a 2D graphics environment. Comput Sci Eng. 9:90–5. DOI:
10.1109/MCSE.2007.55.
13. Xie J, Wang Q. 2020; Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models. IEEE Trans Biomed Eng. 67:3101–24. DOI:
10.1109/TBME.2020.2975959. PMID:
32091990.
14. Zhu T, Li K, Herrero P, Georgiou P. 2023; Personalized blood glucose prediction for type 1 diabetes using evidential deep learning and meta-learning. IEEE Trans Biomed Eng. 70:193–204. DOI:
10.1109/TBME.2022.3187703. PMID:
35776825.
15. Snowden SG, Korosi A, de Rooij SR, Koulman A. 2020; Combining lipidomics and machine learning to measure clinical lipids in dried blood spots. Metabolomics. 16:83. DOI:
10.1007/s11306-020-01703-0. PMID:
32710150. PMCID:
PMC7381462.
17. Zhou R, Liang YF, Cheng HL, Wang W, Huang DW, Wang Z, et al. 2022; A highly accurate delta check method using deep learning for detection of sample mix-up in the clinical laboratory. Clin Chem Lab Med. 60:1984–92. DOI:
10.1515/cclm-2021-1171. PMID:
34963042.
18. Seok HS, Choi Y, Yu S, Shin KH, Kim S, Shin H. 2024; Machine learning-based delta check method for detecting misidentification errors in tumor marker tests. Clin Chem Lab Med. 62:1421–32. DOI:
10.1515/cclm-2023-1185. PMID:
38095534.
19. Wang H, Wang H, Zhang J, Li X, Sun C, Zhang Y. 2021; Using machine learning to develop an autoverification system in a clinical biochemistry laboratory. Clin Chem Lab Med. 59:883–91. DOI:
10.1515/cclm-2020-0716. PMID:
33554565.
20. Demirci F, Akan P, Kume T, Sisman AR, Erbayraktar Z, Sevinc S. 2016; Artificial neural network approach in laboratory test reporting: learning algorithms. Am J Clin Pathol. 146:227–37. DOI:
10.1093/ajcp/aqw104. PMID:
27473741.
21. Ialongo C, Pieri M, Bernardini S. 2017; Artificial neural network for total laboratory automation to improve the management of sample dilution: smart automation for clinical laboratory timeliness. SLAS Technol. 22:44–9. DOI:
10.1177/2211068216636635. PMID:
26956577.
22. Dauwalder O, Michel A, Eymard C, Santos K, Chanel L, Luzzati A, et al. 2021; Use of artificial intelligence for tailored routine urine analyses. Clin Microbiol Infect. 27:1168.e1–6. DOI:
10.1016/j.cmi.2020.09.056. PMID:
33038526.
23. Wilkes EH, Emmett E, Beltran L, Woodward GM, Carling RS. 2020; A machine learning approach for the automated interpretation of plasma amino acid profiles. Clin Chem. 66:1210–8. DOI:
10.1093/clinchem/hvaa134. PMID:
32870990.
24. Stevenson E, Walsh C, Hibberd L. 2024; Can artificial intelligence replace biochemists? A study comparing interpretation of thyroid function test results by ChatGPT and Google Bard to practising biochemists. Ann Clin Biochem. 61:143–9. DOI:
10.1177/00045632231203473. PMID:
37699796.
25. Del Ben F, Da Col G, Cobârzan D, Turetta M, Rubin D, Buttazzi P, et al. 2023; A fully interpretable machine learning model for increasing the effectiveness of urine screening. Am J Clin Pathol. 160:620–32. DOI:
10.1093/ajcp/aqad099. PMID:
37658807. PMCID:
PMC10691191.
28. Avci D, Leblebicioglu MK, Poyraz M, Dogantekin E. 2014; A new method based on adaptive discrete wavelet entropy energy and neural network classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling. J Med Syst. 38:7. DOI:
10.1007/s10916-014-0007-3. PMID:
24493072.
30. Jha KK, Dutta HS. 2019; Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Comput Methods Programs Biomed. 179:104987. DOI:
10.1016/j.cmpb.2019.104987. PMID:
31443862.
31. Sampathila N, Chadaga K, Goswami N, Chadaga RP, Pandya M, Prabhu S, et al. 2022; Customized deep learning classifier for detection of acute lymphoblastic leukemia using blood smear images. Healthcare (Basel). 10:1812. DOI:
10.3390/healthcare10101812. PMID:
36292259. PMCID:
PMC9601337.
37. Douglass PM, O'Connor T, Javidi B. 2022; Automated sickle cell disease identification in human red blood cells using a lensless single random phase encoding biosensor and convolutional neural networks. Opt Express. 30:35965–77. DOI:
10.1364/OE.469199. PMID:
36258535.
39. Ahn D, Lee J, Moon S, Park T. 2018; Human-level blood cell counting on lens-free shadow images exploiting deep neural networks. Analyst. 143:5380–7. DOI:
10.1039/C8AN01056K. PMID:
30280723.
42. Zini G, Mancini F, Rossi E, Landucci S, d'Onofrio G. 2023; Artificial intelligence and the blood film: performance of the MC-80 digital morphology analyzer in samples with neoplastic and reactive cell types. Int J Lab Hematol. 45:881–9. DOI:
10.1111/ijlh.14160. PMID:
37641457.
44. Larpant N, Niamsi W, Noiphung J, Chanakiat W, Sakuldamrongpanich T, Kittichai V, et al. 2022; Simultaneous phenotyping of five Rh red blood cell antigens on a paper-based analytical device combined with deep learning for rapid and accurate interpretation. Anal Chim Acta. 1207:339807. DOI:
10.1016/j.aca.2022.339807. PMID:
35491041.
45. Roux-Dalvai F, Gotti C, Leclercq M, Hélie MC, Boissinot M, Arrey TN, et al. 2019; Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning. Mol Cell Proteomics. 18:2492–505. DOI:
10.1074/mcp.TIR119.001559. PMID:
31585987. PMCID:
PMC6885708.
46. Amano M, Mai DT, Sun G, Vu TN, Hoi LT, Hoa NT, et al. 2022; Deep learning approach for classifying bacteria types using morphology of bacterial colony. Annu Int Conf IEEE Eng Med Biol Soc. 2022:2165–8. DOI:
10.1109/EMBC48229.2022.9870986. PMID:
36086561.
47. Rajaonison A, Le Page S, Maurin T, Chaudet H, Raoult D, Baron SA, et al. 2022; Antilogic, a new supervised machine learning software for the automatic interpretation of antibiotic susceptibility testing in clinical microbiology: proof-of-concept on three frequently isolated bacterial species. Clin Microbiol Infect. 28:1286.e1–8. DOI:
10.1016/j.cmi.2022.03.035. PMID:
35398511.
49. Brenton L, Waters MJ, Stanford T, Giglio S. 2020; Clinical evaluation of the APAS® Independence: automated imaging and interpretation of urine cultures using artificial intelligence with composite reference standard discrepant resolution. J Microbiol Methods. 177:106047. DOI:
10.1016/j.mimet.2020.106047. PMID:
32920021.
50. Gammel N, Ross TL, Lewis S, Olson M, Henciak S, Harris R, et al. 2021; Comparison of an automated plate assessment system (APAS Independence) and artificial intelligence (AI) to manual plate reading of methicillin-resistant and methicillin-susceptible
Staphylococcus aureus CHROMagar surveillance cultures. J Clin Microbiol. 59:e0097121. DOI:
10.1128/JCM.00971-21. PMID:
34379525. PMCID:
PMC8525556.
51. He Y, Peng P, Ying W, Wang Q, Wang Y, Liu X, et al. 2022; Contrast between traditional and machine learning algorithms based on a urine culture predictive model: a multicenter retrospective study in patients with urinary calculi. Transl Androl Urol. 11:139–48. DOI:
10.21037/tau-21-780. PMID:
35280663. PMCID:
PMC8899151.
52. Gao Z, Wang L, Zhou L, Zhang J. 2017; HEp-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inform. 21:416–28. DOI:
10.1109/JBHI.2016.2526603. PMID:
26887016.
53. Fang K, Li C, Wang J. 2023; An automatic immunofluorescence pattern classification framework for HEp-2 image based on supervised learning. Brief Bioinform. 24:bbad144. DOI:
10.1093/bib/bbad144. PMID:
37088980.
54. Xiao L, Luo C, Yu T, Luo Y, Wang M, Yu F, et al. 2020; DeepACEv2: automated chromosome enumeration in metaphase cell images using deep convolutional neural networks. IEEE Trans Med Imaging. 39:3920–32. DOI:
10.1109/TMI.2020.3007642. PMID:
32746135.
55. Vajen B, Hänselmann S, Lutterloh F, Käfer S, Espenkötter J, Beening A, et al. 2022; Classification of fluorescent R-band metaphase chromosomes using a convolutional neural network is precise and fast in generating karyograms of hematologic neoplastic cells. Cancer Genet. 260-261:23–9. DOI:
10.1016/j.cancergen.2021.11.005. PMID:
34839233.
56. Gangadhar A, Sari-Sarraf H, Vanapalli SA. 2023; Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv. 13:4222–35. DOI:
10.1039/D2RA07972K. PMID:
36760296. PMCID:
PMC9892890.
57. James G, Witten D, Hastie T, Tibshirani R. 2013. An introduction to statistical learning. Springer;New York: DOI:
10.1007/978-1-4614-7138-7.
60. Cortes C, Vapnik V. 1995; Support-vector networks. Mach Learn. 20:273–97. DOI:
10.1007/BF00994018.
61. Mahesh B. 2020; Machine learning algorithms-a review. Int J Sci Res. 9:381–6. DOI:
10.21275/ART20203995.
65. Krizhevsky A, Sutskever I, Hinton GE. 2012; Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 25.
66. Krizhevsky A, Sutskever I, Hinton GE. 2017; ImageNet classification with deep convolutional neural networks. Commun ACM. 60:84–90. DOI:
10.1145/3065386.
68. Breiman L, Friedman J, editors. 2017. Classification and regression trees. Routledge;Boca Raton: DOI:
10.1201/9781315139470.
70. Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. Proc 22nd ACM SIGKDD Intl Conf Knowl Discov Data Min. p. 785–94. DOI:
10.1145/2939672.2939785.
71. Master SR, Badrick TC, Bietenbeck A, Haymond S. 2023; Machine learning in laboratory medicine: recommendations of the IFCC working group. Clin Chem. 69:690–8. DOI:
10.1093/clinchem/hvad055. PMID:
37252943. PMCID:
PMC10320011.
72. Rodríguez-Temporal D, Herrera L, Alcaide F, Domingo D, Héry-Arnaud G, van Ingen J, et al. 2023; Identification of
Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learning. J Clin Microbiol. 61:e0111022. DOI:
10.1128/jcm.01110-22. PMID:
36602341. PMCID:
PMC9879094.
74. Fang K, Dong Z, Chen X, Zhu J, Zhang B, You J, et al. 2021; Using machine learning to identify clotted specimens in coagulation testing. Clin Chem Lab Med. 59:1289–97. DOI:
10.1515/cclm-2021-0081. PMID:
33660491.
75. Steinbach D, Ahrens PC, Schmidt M, Federbusch M, Heuft L, Lübbert C, et al. 2024; Applying machine learning to blood count data predicts sepsis with ICU admission. Clin Chem. 70:506–15. DOI:
10.1093/clinchem/hvae001. PMID:
38431275.
76. Liao H, Xu Y, Meng Q, Mao Z, Qiao Y, Liu Y, et al. 2023; A convolutional neural network-based, quantitative complete blood count scattergram-mapping framework promptly screens acute promyelocytic leukemia with high sensitivity. Cancer. 129:2986–98. DOI:
10.1002/cncr.34890. PMID:
37254628.
77. Chang YH, Hsiao CT, Chang YC, Lai HY, Lin HH, Chen CC, et al. 2023; Machine learning of cell population data, complete blood count, and differential count parameters for early prediction of bacteremia among adult patients with suspected bacterial infections and blood culture sampling in emergency departments. J Microbiol Immunol Infect. 56:782–92. DOI:
10.1016/j.jmii.2023.05.001. PMID:
37244761.
78. Acevedo A, Merino A, Boldú L, Molina Á, Alférez S, Rodellar J. 2021; A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes. Comput Biol Med. 134:104479. DOI:
10.1016/j.compbiomed.2021.104479. PMID:
34010795.
79. Ialongo C, Pieri M, Bernardini S. 2017; Smart management of sample dilution using an artificial neural network to achieve streamlined processes and saving resources: the automated nephelometric testing of serum free light chain as case study. Clin Chem Lab Med. 55:231–6. DOI:
10.1515/cclm-2016-0263. PMID:
27404901.
80. Khan RU, Almakdi S, Alshehri M, Haq AU, Ullah A, Kumar R. 2024; An intelligent neural network model to detect red blood cells for various blood structure classification in microscopic medical images. Heliyon. 10:e26149. DOI:
10.1016/j.heliyon.2024.e26149. PMID:
38384569. PMCID:
PMC10879026.
81. Lin YH, Liao KYK, Sung KB. 2020; Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network. J Biomed Opt. 25:116502. DOI:
10.1117/1.JBO.25.11.116502. PMID:
33188571. PMCID:
PMC7665881.
82. Sharma S, Gupta S, Gupta D, Juneja S, Gupta P, Dhiman G, et al. 2022; Deep learning model for the automatic classification of white blood cells. Comput Intell Neurosci. 2022:7384131. DOI:
10.1155/2022/7384131. PMID:
35069725. PMCID:
PMC8769872.
84. Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. 2023; Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 183:589–96. DOI:
10.1001/jamainternmed.2023.1838. PMID:
37115527. PMCID:
PMC10148230.
85. Kanjee Z, Crowe B, Rodman A. 2023; Accuracy of a generative artificial intelligence model in a complex diagnostic challenge. JAMA. 330:78–80. DOI:
10.1001/jama.2023.8288. PMID:
37318797. PMCID:
PMC10273128.
86. Yang HS, Wang F, Greenblatt MB, Huang SX, Zhang Y. 2023; AI chatbots in clinical laboratory medicine: foundations and trends. Clin Chem. 69:1238–46. DOI:
10.1093/clinchem/hvad106. PMID:
37664912.
87. Kurstjens S, Schipper A, Krabbe J, Kusters R. 2024; Predicting hemoglobinopathies using ChatGPT. Clin Chem Lab Med. 62:e59–61. DOI:
10.1515/cclm-2023-0885. PMID:
37650428.
88. Wu AHB, Jaffe AS, Peacock WF, Kavsak P, Greene D, Christenson RH. 2024; The role of artificial intelligence for providing scientific content for laboratory medicine. J Appl Lab Med. 9:386–93. DOI:
10.1093/jalm/jfad095. PMID:
38102068.
89. Cadamuro J, Cabitza F, Debeljak Z, De Bruyne S, Frans G, Perez SM, et al. 2023; Potentials and pitfalls of ChatGPT and natural-language artificial intelligence models for the understanding of laboratory medicine test results. An assessment by the European Federation of Clinical chemistry and Laboratory Medicine (EFLM) Working Group on Artificial Intelligence (WG-AI). Clin Chem Lab Med. 61:1158–66. DOI:
10.1515/cclm-2023-0355. PMID:
37083166.
90. He H, Garcia EA. 2009; Learning from imbalanced data. IEEE Trans Knowl Data Eng. 21:1263–84. DOI:
10.1109/TKDE.2008.239.
91. Drummond C, Holte RC. 2005. Severe class imbalance: why better algorithms aren't the answer. 3720:In : European Conference on Machine Learning; Springer;Berlin, Heidelberg: p. 539–46. DOI:
10.1007/11564096_52.
92. Carobene A, Milella F, Famiglini L, Cabitza F. 2022; How is test laboratory data used and characterised by machine learning models? A systematic review of diagnostic and prognostic models developed for COVID-19 patients using only laboratory data. Clin Chem Lab Med. 60:1887–901. DOI:
10.1515/cclm-2022-0182. PMID:
35508417.
93. Agnello L, Vidali M, Padoan A, Lucis R, Mancini A, Guerranti R, et al. 2024; Machine learning algorithms in sepsis. Clin Chim Acta. 553:117738. DOI:
10.1016/j.cca.2023.117738. PMID:
38158005.
95. Cho EJ, Jeong TD, Kim S, Park HD, Yun YM, Chun S, et al. 2023; A new strategy for evaluating the quality of laboratory results for big data research: using external quality assessment survey data (2010-2020). Ann Lab Med. 43:425–33. DOI:
10.3343/alm.2023.43.5.425. PMID:
37080743. PMCID:
PMC10151270.
96. Kim S, Cho EJ, Jeong TD, Park HD, Yun YM, Lee K, et al. 2023; Proposed model for evaluating real-world laboratory results for big data research. Ann Lab Med. 43:104–7. DOI:
10.3343/alm.2023.43.1.104. PMID:
36045065. PMCID:
PMC9467825.