1. Harrison JH, Gilbertson JR, Hanna MG, Olson NH, Seheult JN, Sorace JM, et al. 2021; Introduction to artificial intelligence and machine learning for pathology. Arch Pathol Lab Med. 145:1228–54. DOI:
10.5858/arpa.2020-0541-CP. PMID:
33493264.
3. McAlpine ED, Michelow P, Celik T. 2022; The utility of unsupervised machine learning in anatomic pathology. Am J Clin Pathol. 157:5–14. DOI:
10.1093/ajcp/aqab085. PMID:
34302331.
4. Gottesman O, Johansson F, Komorowski M, Faisal A, Sontag D, Doshi-Velez F, et al. 2019; Guidelines for reinforcement learning in healthcare. Nat Med. 25:16–8. DOI:
10.1038/s41591-018-0310-5. PMID:
30617332.
6. Gupta S, Tran T, Luo W, Phung D, Kennedy RL, Broad A, et al. 2014; Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open. 4:e004007. DOI:
10.1136/bmjopen-2013-004007. PMID:
24643167. PMCID:
PMC3963101.
8. Ngo A, Gandhi P, Miller WG. 2017; Frequency that laboratory tests influence medical decisions. J Appl Lab Med. 1:410–4. DOI:
10.1373/jalm.2016.021634. PMID:
33636802.
9. Myers GL, Miller WG. 2016; The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) - A pathway for harmonization. EJIFCC. 27:30–6.
11. Tate JR, Myers GL. 2016; Harmonization of clinical laboratory test results. EJIFCC. 27:5–14. PMID:
27683501. PMCID:
PMC4975212.
12. Park J, Lee S, Kim Y, Choi A, Lee H, Lim J, et al. 2018; Comparison of four automated carcinoembryonic antigen immunoassays: ADVIA Centaur XP, ARCHITECT I2000sr, Elecsys E170, and Unicel Dxi800. Ann Lab Med. 38:355–61. DOI:
10.3343/alm.2018.38.4.355. PMID:
29611386. PMCID:
PMC5895865.
13. van Schrojenstein Lantman M, van de Logt AE, Thelen M, Wetzels JF, van Berkel M. 2022; Serum albumin measurement in nephrology: room for improvement. Nephrol Dial Transplant. 37:1792–9. DOI:
10.1093/ndt/gfaa375. PMID:
33367921.
14. Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. 2012; KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. 2:139–274.
15. Mactier R, Hoenich N, Breen C. 2011; Renal association clinical practice guideline on haemodialysis. Nephron Clin Pract. 118(S1):c241–86. DOI:
10.1159/000328072. PMID:
21555899.
16. van de Logt AE, Rijpma SR, Vink CH, Prudon-Rosmulder E, Wetzels JF, van Berkel M. 2019; The bias between different albumin assays may affect clinical decision-making. Kidney Int. 95:1514–7. DOI:
10.1016/j.kint.2019.01.042. PMID:
31053386.
17. Yang HS, Pan W, Wang Y, Zaydman MA, Spies NC, Zhao Z, et al. 2023; Generalizability of a machine learning model for improving utilization of parathyroid hormone-related peptide testing across multiple clinical centers. Clin Chem. 69:1260–9. DOI:
10.1093/clinchem/hvad141. PMID:
37738611.
18. Jacobsen LM, Bocchino LE, Lum JW, Kollman C, Barnes-Lomen V, Sulik M, et al. 2022; Accuracy of three commercial home-use hemoglobin A1c tests. Diabetes Technol Ther. 24:789–96. DOI:
10.1089/dia.2022.0187. PMID:
35763337.
19. Beck RW, Bocchino LE, Lum JW, Kollman C, Barnes-Lomen V, Sulik M, et al. 2021; An evaluation of two capillary sample collection kits for laboratory measurement of HbA1c. Diabetes Technol Ther. 23:537–45. DOI:
10.1089/dia.2021.0023. PMID:
33826420.
20. Bietenbeck A. 2016; Combining medical measurements from diverse sources: experiences from clinical chemistry. Stud Health Technol Inform. 228:58–62.
22. Dahlweid FM, Kämpf M, Leichtle A. 2018; Interoperability of laboratory data in Switzerland - a spotlight on Bern. J Lab Med. 42:251–8. DOI:
10.1515/labmed-2018-0072.
24. Stram M, Seheult J, Sinard JH, Campbell WS, Carter AB, de Baca ME, et al. 2020; A survey of LOINC code selection practices among participants of the College of American Pathologists coagulation (CGL) and cardiac markers (CRT) proficiency testing programs. Arch Pathol Lab Med. 144:586–96. DOI:
10.5858/arpa.2019-0276-OA. PMID:
31603714.
25. Cholan RA, Pappas G, Rehwoldt G, Sills AK, Korte ED, Appleton IK, et al. 2022; Encoding laboratory testing data: case studies of the national implementation of HHS requirements and related standards in five laboratories. J Am Med Inform Assoc. 29:1372–80. DOI:
10.1093/jamia/ocac072. PMID:
35639494. PMCID:
PMC9277627.
26. Hauser RG, Quine DB, Iscoe M, Arvisais-Anhalt S. 2022; Development and implementation of a standard format for clinical laboratory test results. Am J Clin Pathol. 158:409–15. DOI:
10.1093/ajcp/aqac067. PMID:
35713605.
28. Bernstam EV, Warner JL, Krauss JC, Ambinder E, Rubinstein WS, Komatsoulis G, et al. 2022; Quantitating and assessing interoperability between electronic health records. J Am Med Inform Assoc. 29:753–60. DOI:
10.1093/jamia/ocab289. PMID:
35015861. PMCID:
PMC9006690.
30. Vest JR, Unruh MA, Shapiro JS, Casalino LP. 2019; The associations between query-based and directed health information exchange with potentially avoidable use of health care services. Health Serv Res. 54:981–93. DOI:
10.1111/1475-6773.13169. PMID:
31112303. PMCID:
PMC6736925.
31. Holmgren AJ, Esdar M, Hüsers J, Coutinho-Almeida J. 2023; Health information exchange: understanding the policy landscape and future of data interoperability. Yearb Med Inform. 32:184–94. DOI:
10.1055/s-0043-1768719. PMID:
37414031. PMCID:
PMC10751121.
32. Chen M, Esmaeilzadeh P. 2023; Adoption and use of various health information exchange methods for sending inside health information in US hospitals. Int J Med Inform. 177:105156. DOI:
10.1016/j.ijmedinf.2023.105156. PMID:
37487455.
33. Arvisais-Anhalt S, Lehmann CU, Park JY, Araj E, Holcomb M, Jamieson AR, et al. 2021; What the coronavirus disease 2019 (COVID-19) pandemic has reinforced: the need for accurate data. Clin Infect Dis. 72:920–3. DOI:
10.1093/cid/ciaa1686. PMID:
33146707. PMCID:
PMC7665390.
34. Hulsen T, Friedecký D, Renz H, Melis E, Vermeersch P. 2022; Fernandez-Calle P. From big data to better patient outcomes. Clin Chem Lab Med. 61:580–6. DOI:
10.1515/cclm-2022-1096. PMID:
36539928.
36. Yim WW, Evans HL, Yetisgen M. 2015; Structuring free-text microbiology culture reports for secondary use. AMIA Jt Summits Transl Sci Proc. 2015:471–5. PMID:
26306288. PMCID:
PMC4525274.
37. Carter AB, de Baca ME, Luu HS, Campbell WS, Stram MN. 2020; Use of LOINC for interoperability between organisations poses a risk to safety. Lancet Digit Health. 2:e569. DOI:
10.1016/S2589-7500(20)30244-2. PMID:
33328084. PMCID:
PMC7613542.
38. Lin MC, Vreeman DJ, McDonald CJ, Huff SM. 2010; Correctness of voluntary LOINC mapping for laboratory tests in three large institutions. AMIA Annu Symp Proc. 2010:447–51. PMID:
21347018. PMCID:
PMC3041457.
39. McDonald CJ, Baik SH, Zheng Z, Amos L, Luan X, Marsolo K, et al. 2023; Mis-mappings between a producer's quantitative test codes and LOINC codes and an algorithm for correcting them. J Am Med Inform Assoc. 30:301–7. DOI:
10.1093/jamia/ocac215. PMID:
36343113. PMCID:
PMC9846663.
40. Luu HS, Campbell WS, Cholan RA, Edgerton ME, Englund A, Keller A, et al. 2024; Analysis of laboratory data transmission between two healthcare institutions using a widely used point-to-point health information exchange platform: a case report. JAMIA Open. 7:ooae032. DOI:
10.1093/jamiaopen/ooae032. PMID:
38660616. PMCID:
PMC11042873.
41. Baorto DM, Cimino JJ, Parvin CA, Kahn MG. 1998; Combining laboratory data sets from multiple institutions using the logical observation identifier names and codes (LOINC). Int J Med Inform. 51:29–37. DOI:
10.1016/S1386-5056(98)00089-6. PMID:
9749897.
42. Chang T, Herman DS, McClintock DS, Durant TJS. 2023; The roadmap to interoperability and laboratory data: current state and next steps. J Appl Lab Med. 8:226–8. DOI:
10.1093/jalm/jfac082. PMID:
36610435.
43. CLSI. 2023. Semantic interoperability for in vitro diagnostic systems. 1st ed. Clinical and Laboratory Standards Institute;CLSI report AUTO17.
45. Nestor B, McDermott MBA, Boag W, Berner G, Naumann T, Hughes MC, et al. 2019; Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks. Proc Mach Learn Res. 106:1–23.
47. Shah NH, Halamka JD, Saria S, Pencina M, Tazbaz T, Tripathi M, et al. 2024; A nationwide network of health AI assurance laboratories. JAMA. 331:245–9. DOI:
10.1001/jama.2023.26930. PMID:
38117493.
49. Marzinke MA, Greene DN, Bossuyt PM, Chambliss AB, Cirrincione LR, McCudden CR, et al. 2022; Limited evidence for use of a Black race modifier in eGFR calculations: a systematic review. Clin Chem. 68:521–33. DOI:
10.1093/clinchem/hvab279. PMID:
34927677.
50. Ma MA, Gutiérrez DE, Frausto JM, Al-Delaimy WK. 2021; Minority representation in clinical trials in the United States: trends over the past 25 years. Mayo Clin Proc. 96:264–6. DOI:
10.1016/j.mayocp.2020.10.027. PMID:
33413830.
51. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. 2018; Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 178:1544–7. DOI:
10.1001/jamainternmed.2018.3763. PMID:
30128552. PMCID:
PMC6347576.
53. Hing E, Burt CW. 2009; Are there patient disparities when electronic health records are adopted? J Health Care Poor Underserved. 20:473–88. DOI:
10.1353/hpu.0.0143. PMID:
19395843.
54. Jorde LB, Wooding SP. 2004; Genetic variation, classification and 'racé. Nat Genet. 36(S11):S28–33. DOI:
10.1038/ng1435. PMID:
15508000.
55. Amin C, Adam S, Mooberry MJ, Kutlar A, Kutlar F, Esserman D, et al. 2015; Coagulation activation in sickle cell trait: an exploratory study. Br J Haematol. 171:638–46. DOI:
10.1111/bjh.13641. PMID:
26511074. PMCID:
PMC4782194.
56. Lacy ME, Wellenius GA, Sumner AE, Correa A, Carnethon MR, Liem RI, et al. 2017; Association of sickle cell trait with hemoglobin A1c in African Americans. JAMA. 317:507–15. DOI:
10.1001/jama.2016.21035. PMID:
28170479. PMCID:
PMC5713881.
58. Witzig RS, Dery M. 2014; Subjectively-assigned versus self-reported race and ethnicity in US healthcare. Soc Med. 8:32–6. PMID:
3ee0bbf1e69541d083a5fa1ab24d8140.
59. Kusner MJ, Loftus J, Russell C, Silva R. Counterfactual fairness. In : Adv Neural Inf Process Syst; 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017; Long Beach, CA, USA. DOI:
10.2139/ssrn.4329712.